Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Combined approach of homology modeling, molecular dynamics, and docking: computer-aided drug discovery

Varun Chahal
  • Computational Chemistry Laboratory, Department of Chemistry, University of Delhi Faculty of Science, Delhi 110007, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sonam Nirwan
  • Computational Chemistry Laboratory, Department of Chemistry, University of Delhi Faculty of Science, Delhi 110007, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rita Kakkar
  • Corresponding author
  • Computational Chemistry Laboratory, Department of Chemistry, University of Delhi Faculty of Science, Delhi 110007, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-20 | DOI: https://doi.org/10.1515/psr-2019-0066


With the continuous development in software, algorithms, and increase in computer speed, the field of computer-aided drug design has been witnessing reduction in the time and cost of the drug designing process. Structure based drug design (SBDD), which is based on the 3D structure of the enzyme, is helping in proposing novel inhibitors. Although a number of crystal structures are available in various repositories, there are various proteins whose experimental crystallization is difficult. In such cases, homology modeling, along with the combined application of MD and docking, helps in establishing a reliable 3D structure that can be used for SBDD. In this review, we have reported recent works, which have employed these three techniques for generating structures and further proposing novel inhibitors, for cytoplasmic proteins, membrane proteins, and metal containing proteins. Also, we have discussed these techniques in brief in terms of the theory involved and the various software employed. Hence, this review can give a brief idea about using these tools specifically for a particular problem.

Keywords: homology modeling; docking; molecular dynamics; cytoplasmic proteins; membrane proteins; metalloproteins


  • [1]

    Arora R, Issar U, Kakkar R. Identification of novel urease inhibitors: pharmacophore modeling, virtual screening and molecular docking studies. J Biomol Struct Dyn. 2018;1–5.Google Scholar

  • [2]

    Badhani B, Kakkar R. In silico studies on potential MCF-7 inhibitors: a combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. J Biomol Struct Dyn. 2017;35:1950–67.CrossrefPubMedGoogle Scholar

  • [3]

    Issar U, Arora R, Kumari T, Kakkar R. Combined pharmacophore-guided 3D-QSAR, molecular docking, and virtual screening on bis-benzimidazoles and ter-benzimidazoles as DNA–topoisomerase I poisons. Struct Chem. 2019;30:1–7.Google Scholar

  • [4]

    Spyrakis F, Cavasotto CN. Open challenges in structure-based virtual screening: receptor modeling, target flexibility consideration and active site water molecules description. Arch Biochem Biophys. 2015;583:105–19.CrossrefPubMedGoogle Scholar

  • [5]

    Cavasotto CN, Phatak SS. Homology modeling in drug discovery: current trends and applications. Drug Discov Today. 2009;14:676–83.CrossrefPubMedGoogle Scholar

  • [6]

    Krieger E, Nabuurs SB, Vriend G. Homology modeling. Methods Biochem Anal. 2003;44:509–24.PubMedGoogle Scholar

  • [7]

    Meier A, Söding J. Automatic prediction of protein 3D structures by probabilistic multi-template homology modeling. PLoS Comput Biol. 2015;11:e1004343.CrossrefPubMedGoogle Scholar

  • [8]

    Vyas VK, Ukawala RD, Ghate M, Chintha C. Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci. 2012;74:1.PubMedCrossrefGoogle Scholar

  • [9]

    Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325.CrossrefPubMedGoogle Scholar

  • [10]

    Cheng J. A multi-template combination algorithm for protein comparative modeling. BMC Struct Biol. 2008;8:18.CrossrefPubMedGoogle Scholar

  • [11]

    Liu T, Guerquin M, Samudrala R. Improving the accuracy of template-based predictions by mixing and matching between initial models. BMC Struct Biol. 2008;8:24.CrossrefPubMedGoogle Scholar

  • [12]

    Chatzou M, Magis C, Chang JM, Kemena C, Bussotti G, Erb I, et al. Multiple sequence alignment modeling: methods and applications. Brief Bioinform. 2015;17:1009–23.PubMedGoogle Scholar

  • [13]

    Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.CrossrefGoogle Scholar

  • [14]

    Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Bioinf. 1993;17:355–62.CrossrefGoogle Scholar

  • [15]

    Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60:2256–68.PubMedCrossrefGoogle Scholar

  • [16]

    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.PubMedCrossrefGoogle Scholar

  • [17]

    Feng Z, Pearce LV, Xu X, Yang X, Yang P, Bumberg PM, et al. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations. J Chem Inf Model. 2015;55:572–88.CrossrefPubMedGoogle Scholar

  • [18]

    Khoddami M, Nadri H, Moradi A, Sakhteman A. Homology modeling, molecular dynamic simulation, and docking based binding site analysis of human dopamine (D4) receptor. J Mol Model. 2015;21:36.PubMedCrossrefGoogle Scholar

  • [19]

    González MA. Force fields and molecular dynamics simulations. Écolethématique de la SociétéFrançaise de la Neutronique. 2011;12:169–200.Google Scholar

  • [20]

    Snow CD, Sorin EJ, Rhee YM, Pande VS. How well can simulation predict protein folding kinetics and thermodynamics? Annu Rev Biophys Biomol Struct. 2005;34:43–69.CrossrefPubMedGoogle Scholar

  • [21]

    Kandt C, Ash WL, Tieleman DP. Setting up and running molecular dynamics simulations of membrane proteins. Methods. 2007;41:475–88.CrossrefPubMedGoogle Scholar

  • [22]

    Sperotto MM, May S, Baumgaertner A. Modelling of proteins in membranes. Chem Phys Lipids. 2006;141:2–9.CrossrefPubMedGoogle Scholar

  • [23]

    Lindahl E, Sansom MS. Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol. 2008;18:425–31.CrossrefPubMedGoogle Scholar

  • [24]

    Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput. 2015;11:2144–55.PubMedCrossrefGoogle Scholar

  • [25]

    Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46:363–7.CrossrefGoogle Scholar

  • [26]

    Arora R, Issar U, Kakkar R. In Silico study of the active site of Helicobacter pylori urease and its inhibition by hydroxamic acids. J Mol Graph Model. 2018;83:64–73.PubMedCrossrefGoogle Scholar

  • [27]

    Morris GM, Huey R, Olson AJ. Using autodock for ligand-receptor docking. Curr Protoc Bioinf. 2008;24:8–14.Google Scholar

  • [28]

    Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46:499–511.CrossrefPubMedGoogle Scholar

  • [29]

    Cui YL, Zhang JL, Zheng QC, Niu RJ, Xu Y, Zhang HX, et al. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels. Chem Eur J. 2013;19:549–57.CrossrefGoogle Scholar

  • [30]

    Nelson DR. The cytochrome p450 homepage. Hum Genomics. 2009;4:59.PubMedGoogle Scholar

  • [31]

    Dozio E, Briganti S, Vianello E, Dogliotti G, Barassi A, Malavazos AE, et al. Epicardial adipose tissue inflammation is related to vitamin D deficiency in patients affected by coronary artery disease. Nutr Metab Cardiovasc Dis. 2015;25:267–73.PubMedCrossrefGoogle Scholar

  • [32]

    Mauf S, Penna-Martinez M, Jentzsch T, Ackermann H, Henrich D, Radeke HH, et al. Immunomodulatory effects of 25-hydroxyvitamin D3 on monocytic cell differentiation and influence of vitamin D3 polymorphisms in type 1 diabetes. J Steroid Biochem Mol Biol. 2015;147:17–23.CrossrefPubMedGoogle Scholar

  • [33]

    Slominski AT, Brożyna AA, Skobowiat C, Zmijewski MA, Kim TK, Janjetovic Z, et al. On the role of classical and novel forms of vitamin D in melanoma progression and management. J Steroid Biochem Mol Biol. 2018;177:159–70.PubMedCrossrefGoogle Scholar

  • [34]

    Jayaraj JM, Krishnasamy G, Lee JK, Muthusamy K. In silico identification and screening of CYP24A1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. J Biomol Struct Dyn. 2018;37:1700–1714.PubMedGoogle Scholar

  • [35]

    Fan JR, Zheng QC, Cui YL, Li WK, Zhang HX. Investigation of ligand selectivity in CYP3A7 by molecular dynamics simulations. J Biomol Struct Dyn. 2015;33:2360–7.PubMedCrossrefGoogle Scholar

  • [36]

    Mordvinov VA, Shilov AG, Pakharukova MY. Anthelmintic activity of cytochrome P450 inhibitors miconazole and clotrimazole: in-vitro effect on the liver fluke Opisthorchisfelineus. Int J Antimicrob Agents. 2017;50:97–100.CrossrefGoogle Scholar

  • [37]

    Pakharukova MY, Mordvinov VA. The liver fluke Opisthorchisfelineus: biology, epidemiology and carcinogenic potential. Trans R Soc Trop Med Hyg. 2016;110:28–36.CrossrefGoogle Scholar

  • [38]

    Shukla R, Chetri PB, Sonkar A, Pakharukova MY, Mordivnov VA, Tripathi T. Identification of novel natural inhibitors of Opisthorchisfelineus cytochrome P450 using structure-based screening and molecular dynamic simulation. J Biomol Struct Dyn. 2018;36:3541–56.CrossrefGoogle Scholar

  • [39]

    Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR review 14. Br J Pharmacol. 2015;172:2675–700.PubMedCrossrefGoogle Scholar

  • [40]

    Rutaganira FU, Fowler ML, McPhail JA, Gelman MA, Nguyen K, Xiong A, et al. Design and structural characterization of potent and selective inhibitors of phosphatidylinositol 4 kinase IIIβ. J Med Chem. 2016;59:1830–9.PubMedCrossrefGoogle Scholar

  • [41]

    Calmettes G, Ribalet B, John S, Korge P, Ping P, Weiss JN. Hexokinases and cardioprotection. J Mol Cell Cardiol. 2015;78:107–15.CrossrefPubMedGoogle Scholar

  • [42]

    Assouline S, Cocolakis E, Borden K. The development of novel therapies for the treatment of Acute Myeloid Leukemia (AML). Cancers. 2012;4:1161–79.PubMedCrossrefGoogle Scholar

  • [43]

    Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, et al. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem. 2014;58:466–79.PubMedGoogle Scholar

  • [44]

    Leung AY, Man CH, Kwong YL. FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia. Leukemia. 2013;27:260.PubMedCrossrefGoogle Scholar

  • [45]

    Ke YY, Singh VK, Coumar MS, Hsu YC, Wang WC, Song JS, et al. Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep. 2015;5:11702.PubMedCrossrefGoogle Scholar

  • [46]

    Ramakrishnan C, Mary Thangakani A, Velmurugan D, Anantha Krishnan D, Sekijima M, Akiyama Y, et al. Identification of type I and type II inhibitors of c-Yes kinase using in silico and experimental techniques. J Biomol Struct Dyn. 2018;36:1566–76.PubMedCrossrefGoogle Scholar

  • [47]

    Ul-Haq Z, Gul S, Usmani S, Wadood A, Khan W. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study. J Mol Graph Model. 2015;62:276–82.CrossrefPubMedGoogle Scholar

  • [48]

    Tanneeru K, Balla AR, Guruprasad L. In silico 3D structure modeling and inhibitor binding studies of human male germ cell-associated kinase. J Biomol Struct Dyn. 2015;33:1710–9.CrossrefPubMedGoogle Scholar

  • [49]

    Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253.CrossrefPubMedGoogle Scholar

  • [50]

    Ravanbakhsh S, Gajewski M, Greiner R, Tuszynski JA. Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy. Theor Biol Med. 2013;10:29.CrossrefGoogle Scholar

  • [51]

    Wang Y, Zhang H, Gigant B, Yu Y, Wu Y, Chen X, et al. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. Febs J. 2016;283:102–11.CrossrefPubMedGoogle Scholar

  • [52]

    Kumbhar BV, Borogaon A, Panda D, Kunwar A. Exploring the origin of differential binding affinities of human tubulin isotypes αβII, αβIII and αβIV for DAMA-colchicine using homology modelling, molecular docking and molecular dynamics simulations. PLoS One. 2016;11:e0156048.PubMedCrossrefGoogle Scholar

  • [53]

    Aguayo-Ortiz R, Cano-González L, Castillo R, Hernández-Campos A, Dominguez L. Structure-based approaches for the design of benzimidazole-2-carbamate derivatives as tubulin polymerization inhibitors. Chem Biol Drug Des. 2017;90:40–51.PubMedCrossrefGoogle Scholar

  • [54]

    Joshi HC, Palacios MJ, McNamara L, Cleveland DW. γ-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992;356:80.PubMedCrossrefGoogle Scholar

  • [55]

    Oakley BR, Oakley CE, Yoon Y, Jung MK. γ-Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillusnidulans. Cell. 1990;61:1289–301.CrossrefGoogle Scholar

  • [56]

    Katsetos CD, Dráberová E, Legido A, Dráber P. Tubulin targets in the pathobiology and therapy of glioblastomamultiforme. II. γ-tubulin. J Cell Physiol. 2009;221:514–20.CrossrefGoogle Scholar

  • [57]

    Niu Y, Liu T, Tse GM, Sun B, Niu R, Li HM, et al. Increased expression of centrosomal α, γ-tubulin in atypical ductal hyperplasia and carcinoma of the breast. Cancer Sci. 2009;100:580–7.PubMedCrossrefGoogle Scholar

  • [58]

    Suri C, Naik PK. Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to γ-tubulin dimer. SAR QSAR Environ Res. 2015;26:507–19.CrossrefPubMedGoogle Scholar

  • [59]

    Engles L. Review and application of serine protease inhibition in coronary artery bypass graft surgery. Am J Health Syst Pharm. 2005;62:S9–14.CrossrefPubMedGoogle Scholar

  • [60]

    Siklos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5:506–19.CrossrefGoogle Scholar

  • [61]

    Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.PubMedCrossrefGoogle Scholar

  • [62]

    Dhanavade MJ, Jalkute CB, Barage SH, Sonawane KD. Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonascampestris in degradation of Aβ peptide. Comput Biol Med. 2013;43:2063–70.CrossrefGoogle Scholar

  • [63]

    Sabnis YA, Desai PV, Rosenthal PJ, Avery MA. Probing the structure of falcipain-3, a cysteine protease from Plasmodium falciparum: comparative protein modeling and docking studies. Protein Sci. 2003;12:501–9.PubMedCrossrefGoogle Scholar

  • [64]

    Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov. 2011;10:47.CrossrefPubMedGoogle Scholar

  • [65]

    Chattopadhyay A. GPCRs: Lipid-Dependent Membrane Receptors That Act as Drug Targets. Adv Biol. 2014;2014:1–12.CrossrefGoogle Scholar

  • [66]

    Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure–function analysis of G protein-coupled receptors. Chem Rev. 2011;12:438–535.Google Scholar

  • [67]

    Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem. 2002;3:928–44.CrossrefPubMedGoogle Scholar

  • [68]

    Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356.CrossrefPubMedGoogle Scholar

  • [69]

    Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther. 2004;104:173–206.CrossrefPubMedGoogle Scholar

  • [70]

    Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993.PubMedCrossrefGoogle Scholar

  • [71]

    Schlyer S, Horuk R. I want a new drug: G-protein-coupled receptors in drug development. Drug Discov Today. 2006;11:481–93.CrossrefGoogle Scholar

  • [72]

    Buhot MC. Serotonin receptors in cognitive behaviors. Curr Opin Neurobiol. 1997;7:243–54.PubMedCrossrefGoogle Scholar

  • [73]

    Demirkaya K, ÖM A, Şenel B, Öncel Torun Z, Seyrek M, Lacivita E, et al. Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice. J Appl Oral Sci. 2016;24:218–22.PubMedCrossrefGoogle Scholar

  • [74]

    Medina RA, Sallander J, Benhamú B, Porras E, Campillo M, Pardo L, et al. Synthesis of new serotonin 5-HT7 receptor ligands. Determinants of 5-HT7/5-HT1A receptor selectivity. J Med Chem. 2009;52:2384–92.CrossrefPubMedGoogle Scholar

  • [75]

    Jha P, Chaturvedi S, Swastika , Pal S, Jain N, Mishra AK. Improvising 5-HT7R homology model for design of high affinity ligands: model validation with docking, embrace minimization, MM-GBSA, and molecular dynamic simulations. J Biomol Struct Dyn. 2018;36:2475–94.PubMedCrossrefGoogle Scholar

  • [76]

    Pease JE, Horuk R. Chemokine receptor antagonists: part 1. Expert Opin Ther Pat. 2009;19:39–58.PubMedCrossrefGoogle Scholar

  • [77]

    Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1–transformed T cells. Blood. 2002;99:1505–11.CrossrefPubMedGoogle Scholar

  • [78]

    Yuan Q, Bromley SK, Means TK, Jones KJ, Hayashi F, Bhan AK, et al. CCR4-dependent regulatory T cell function in inflammatory bowel disease. J Exp Med. 2007;204:1327–34.PubMedCrossrefGoogle Scholar

  • [79]

    Gadhe CG, Kim MH. Insights into the binding modes of CC chemokine receptor 4 (CCR4) inhibitors: a combined approach involving homology modelling, docking, and molecular dynamics simulation studies. Mol Bio Syst. 2015;11:618–34.Google Scholar

  • [80]

    Sakhteman A, Khoddami M, Negahdaripour M, Mehdizadeh A, Tatar M, Ghasemi Y. Exploring 3D structure of human gonadotropin hormone receptor at antagonist state using homology modeling, molecular dynamic simulation, and cross-docking studies. J Mol Model. 2016;22:225.PubMedCrossrefGoogle Scholar

  • [81]

    Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.CrossrefPubMedGoogle Scholar

  • [82]

    Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004;1:27–42.PubMedCrossrefGoogle Scholar

  • [83]

    Baumert C, Günthel M, Krawczyk S, Hemmer M, Wersig T, Langner A, et al. Development of small-molecule P-gp inhibitors of the N-benzyl 1, 4-dihydropyridine type: novel aspects in SAR and bioanalytical evaluation of multidrug resistance (MDR) reversal properties. Bioorg Med Chem. 2013;21:166–77.PubMedCrossrefGoogle Scholar

  • [84]

    Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219.PubMedCrossrefGoogle Scholar

  • [85]

    Shukla S, Ohnuma S, Ambudkar SV. Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets. 2011;12:621–30.PubMedCrossrefGoogle Scholar

  • [86]

    Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 2003;10:159–65.PubMedCrossrefGoogle Scholar

  • [87]

    Kim Y, Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 2018;359:915–9.CrossrefPubMedGoogle Scholar

  • [88]

    Prajapati R, Singh U, Patil A, Khomane KS, Bagul P, Bansal AK, et al. In silico model for P-glycoprotein substrate prediction: insights from molecular dynamics and in vitro studies. J Comput Aided Mol Des. 2013;27:347–63.CrossrefPubMedGoogle Scholar

  • [89]

    Prajapati R, Sangamwar AT. Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: insights from multi-targeted molecular dynamics. Biochim Biophys Acta Biomembr. 2014;1838:2882–98.CrossrefGoogle Scholar

  • [90]

    Shahraki O, Zargari F, Edraki N, Khoshneviszadeh M, Firuzi O, Miri R. Molecular dynamics simulation and molecular docking studies of 1, 4-Dihydropyridines as P-glycoprotein’s allosteric inhibitors. J Biomol Struct Dyn. 2018;36:112–25.PubMedCrossrefGoogle Scholar

  • [91]

    Syed SB, Arya H, Fu IH, Yeh TK, Periyasamy L, Hsieh HP, et al. Targeting P-glycoprotein: investigation of piperine analogs for overcoming drug resistance in cancer. Sci Rep. 2017;7:7972.CrossrefPubMedGoogle Scholar

  • [92]

    Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer—trials and tribulations. Science. 2002;295:2387–92.CrossrefPubMedGoogle Scholar

  • [93]

    Ji X, Wang W, Zheng Y, Hao J, Sun M. Homology modeling and molecular dynamics simulation studies of a marine alkaline protease. Bioinform Biol Insights. 2012;6:BBI-S10663.PubMedGoogle Scholar

  • [94]

    Kashyap K, Kakkar R. An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies. J Biomol Struct Dyn. 2019;1–22.PubMedGoogle Scholar

  • [95]

    Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277:8–21.PubMedCrossrefGoogle Scholar

  • [96]

    Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E, Kabarriti R, et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci. 2007;120:1469–79.CrossrefPubMedGoogle Scholar

  • [97]

    Zhang Y, Gilquin B, Khochbin S, Matthias P. Two catalytic domains are required for protein deacetylation. J Biol Chem. 2006;281:2401–4.PubMedCrossrefGoogle Scholar

  • [98]

    Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 2008;9:40.CrossrefGoogle Scholar

  • [99]

    Sixto-López Y, Bello M, Rodríguez-Fonseca RA, Rosales-Hernández MC, Martínez-Archundia M, Gómez-Vidal JA, et al. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. J Biomol Struct Dyn. 2017;35:2794–814.PubMedCrossrefGoogle Scholar

  • [100]

    Ibrahim Uba A, Yelekçi K. Homology modeling of human histone deacetylase 10 and design of potential selective inhibitors. J Biomol Struct Dyn. 2019;37:3627–36.PubMedCrossrefGoogle Scholar

  • [101]

    Melesina J, Robaa D, Pierce RJ, Romier C, Sippl W. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors. J Mol Graph Model. 2015;62:342–61.PubMedCrossrefGoogle Scholar

  • [102]

    Hoops SC, Anderson KW, Merz KM, Jr. Force field design for metalloproteins. J Am Chem Soc. 1991;113:8262–70.CrossrefGoogle Scholar

About the article

Published Online: 2019-08-20

Citation Information: Physical Sciences Reviews, Volume 4, Issue 10, 20190066, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2019-0066.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in