Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Recent advances in the self-assembly of polynuclear metal–selenium and –tellurium compounds from 14–16 reagents

Alexander M. Polgar
  • Department of Chemistry, Western University, 1151 Richmont Street, London, Ontario N6A 5B7, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John F. Corrigan
  • Corresponding author
  • Department of Chemistry, Western University, 1151 Richmont Street, London, Ontario N6A 5B7, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-14 | DOI: https://doi.org/10.1515/psr-2017-0126

Abstract

The use of reagents containing bonds between group 14 elements and Se or Te for the self-assembly of polynuclear metal–chalcogen compounds is covered. Background material is briefly reviewed and examples from the literature are highlighted from the period 2007–2017. Emphasis is placed on the different classes of 14–16 precursors and their application in the targeted synthesis of metal–chalcogen compounds. The unique properties arising from the combination of specific 14–16 precursors, metal atoms, and ancillary ligands are also described. Selected examples are chosen to underline the progress in (i) controlled synthesis of heterometallic (ternary) chalcogen clusters, (ii) chalcogen clusters with organic functionalized surfaces, and (iii) crystalline open-framework metal chalcogenides.

Keywords: cluster; synthesis; heterometallic; complexes; surface derivatization; extended; networks

References

  • [1]

    Dance, IG, and K Fisher. Metal chalcogenide cluster chemistry. Prog Inorg Chem. 1994;41:637–803.Google Scholar

  • [2]

    Dehnen, S, A Eichhöfer, and D Fenske. Chalcogen-bridged copper clusters. Eur J Inorg Chem. 2002;2002:279–317.CrossrefGoogle Scholar

  • [3]

    Corrigan, JF, O Fuhr, and D Fenske. Metal chalcogenide clusters on the border between molecules and materials. Adv Mater. 2009;21:1867–71.CrossrefGoogle Scholar

  • [4]

    Fuhr, O, S Dehnen, and D Fenske. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem Soc Rev. 2013;42:1871–906.PubMedCrossrefGoogle Scholar

  • [5]

    Levchenko, TI, Y Huang, and JF Corrigan. Large metal chalcogenide clusters and their ordered superstructures via solvothermal and ionothermal syntheses. In S. Dehnen, ed. Clusters – Contemporary insights in structure and bonding. Structure and bonding, vol. 174. Basel Switzerland: Springer 2017.Google Scholar

  • [6]

    Xie, Y-P, J-L Jin, G-X Duan, X Lu, and TCW Mak. High-nuclearity silver(I) chalcogenide clusters: a novel class of supramolecular assembly. Coord Chem Rev. 2017;331:54–72.CrossrefGoogle Scholar

  • [7]

    Kanatzidis, MG, and S-P Huang. Coordination chemistry of heavy polychalcogenide ligands. Coord Chem Rev. 1994;130:509–621.CrossrefGoogle Scholar

  • [8]

    Kanatzidis, MG, and AC Sutorik. The application of polychalcogenide salts to the exploratory synthesis of solid state multinary chalcogenides at intermediate temperatures. In K.D. Karlin, ed. Progress in inorganic chemistry. Vol. 43. New York: John Wiley & Sons, Inc.; 1995. p. 151–265.Google Scholar

  • [9]

    Kanatzidis, MG. Discovery – Synthesis, design, and prediction of chalcogenide phases. Inorg Chem. 2017;56:3158–73.PubMedCrossrefGoogle Scholar

  • [10]

    Herskovitz, T, BA Averill, RH Holm, JA Ibers, WD Phillips, and JF Weiher. Structure and properties of a synthetic analogue of bacterial iron-sulfur proteins. Proc Nat Acad Sci USA. 1972;69:2437–41.CrossrefGoogle Scholar

  • [11]

    Howard, JB, and DC Rees. Structural basis of biological nitrogen fixation. Chem Rev. 1996;96:2965–82.PubMedCrossrefGoogle Scholar

  • [12]

    J-M, M, and B Lamotte. Iron–Sulfur clusters and their electronic and magnetic properties. Coord Chem Rev. 1998;178-180:1573–614.CrossrefGoogle Scholar

  • [13]

    Ohki, Y, Y Sunada, M Honda, M Katada, and K Tatsumi. Synthesis of the P-cluster inorganic core of nitrogenases. J Am Chem Soc. 2003;125:4052–3.CrossrefPubMedGoogle Scholar

  • [14]

    Riaz, U, O Curnow, and MD Curtis. Desulfurization of thiophene and thiophenol by a sulfido-cobalt-molybdenum cluster: toward a homogeneous hydrodesulfurization catalyst. J Am Chem Soc. 1991;113:1416–7.CrossrefGoogle Scholar

  • [15]

    Kuwata, S, and M Hidai. Hydrosulfido complexes of transition metals. Coord Chem Rev. 2001;213:211–305.CrossrefGoogle Scholar

  • [16]

    Nirmal, M, and L Brus. Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res. 1999;32:407–14.CrossrefGoogle Scholar

  • [17]

    Owen, J, and L Brus. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J Am Chem Soc. 2017;139:10939–43.CrossrefPubMedGoogle Scholar

  • [18]

    Lokhande AC, Chalapathy RBV, He M, Jo E, Gang M, Pawar SA, et al. Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: a status review. Sol Energy Mater Sol Cells. 2016;153:84–107.CrossrefGoogle Scholar

  • [19]

    Hou, H-W, X X-Q, and S Shi. Mo(W,V)-Cu(Ag)-S(Se) cluster compounds. Coord Chem Rev. 1996;153:25–56.CrossrefGoogle Scholar

  • [20]

    Zhang, Q-F, L W-H, and X Xin. Heteroselenometallic cluster compounds with tetraselenometalates. Coord Chem Rev. 2002;224:35–49.CrossrefGoogle Scholar

  • [21]

    Chung, I, and MG Kanatzidis. Metal chalcogenides: a rich source of nonlinear optical materials. Chem Mater. 2014;26:849–69.CrossrefGoogle Scholar

  • [22]

    Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 2004;303:818–21.CrossrefGoogle Scholar

  • [23]

    Sootsman, JR, DY Chung, and MG Kanatzidis. New and old concepts in thermoelectric materials. Angew Chem Int Ed. 2009;48:8616–39.CrossrefGoogle Scholar

  • [24]

    Kanatzidis, MG. Nanostructured thermoelectrics: the new paradigm? Chem Mater. 2010;22:648–59.CrossrefGoogle Scholar

  • [25]

    Schulz, S. Covalently bonded compounds of heavy group 15/16 elements - synthesis, structure and potential application in material sciences. Coord Chem Rev. 2015;297-298:49–76.CrossrefGoogle Scholar

  • [26]

    Beaulac, R, PI Archer, ST Ochsenbein, and DR Gamelin. Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics. Adv Funct Mater. 2008;18:3873–91.CrossrefGoogle Scholar

  • [27]

    Mulrooney, RC, N Singh, N Kaur, and JF Callan. An “off-on” sensor for fluoride using luminescent CdSe/ZnS quantum dots. Chem Commun. 2009;686–8.Google Scholar

  • [28]

    Bowes, CL, and GA Ozin. Self-assembling frameworks: beyond microporous oxides. Adv Mater. 1996;8:13–28.CrossrefGoogle Scholar

  • [29]

    Bu, X, N Zheng, and P Feng. Tetrahedral chalcogenide clusters and open frameworks. Chem – Eur J. 2004;10:3356–62.CrossrefGoogle Scholar

  • [30]

    Feng, P, X Bu, and N Zheng. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Acc Chem Res. 2005;38:293–303.CrossrefPubMedGoogle Scholar

  • [31]

    Kanatzidis, MG. Beyond silica: nonoxidic mesostructured materials. Adv Mater. 2007;19:1165–81.CrossrefGoogle Scholar

  • [32]

    DeGroot, MW, and JF Corrigan. High nuclearity clusters: metal-chalcogenide polynuclear complexes. In M. Fujita, A. Powell and C.A. Creutz, ed. Comprehensive coordination chemistry II. Vol. 7. Oxford, UK: Elsevier; 2004. p. 57–123.Google Scholar

  • [33]

    DeGroot, MW, and JF Corrigan. Metal - chalcogenolate complexes with silyl functionalities: synthesis and reaction chemistry. Z Anorg Allg Chem. 2006;632:19–29.CrossrefGoogle Scholar

  • [34]

    MacDonald, DG, and JF Corrigan. Metal chalcogenide nanoclusters with ‘tailored’ surfaces via ‘designer’ silylated chalcogen reagents. Phil Trans R Soc A. 2010;368:1455–72.CrossrefGoogle Scholar

  • [35]

    Sheldrick, WS, and M Wachhold. Chalcogenidometalates of the heavier Group 14 and 15 elements. Coord Chem Rev. 1998;176:211–322.CrossrefGoogle Scholar

  • [36]

    Dehnen, S, and M Melullis. A coordination chemistry approach towards ternary M/14/16 anions. Coord Chem Rev. 2007;251:1259–80.CrossrefGoogle Scholar

  • [37]

    Heine, J, and S Dehnen. From simple chalcogenidotetrelate precursors to complex structures and functional compounds. Z Anorg Allg Chem. 2012;638:2425–40.CrossrefGoogle Scholar

  • [38]

    Santner, S, J Heine, and S Dehnen. Synthesis of crystalline chalcogenides in ionic liquids. Angew Chem Int Ed. 2016;55:876–93.CrossrefGoogle Scholar

  • [39]

    Abel, EW, and DB Brady. The preparation and properties of some alkylthio-compounds of tin. J Chem Soc. 1965;1192–7.CrossrefGoogle Scholar

  • [40]

    Schumann, H, and M Schmidt. New products of reaction of organometallic compounds with sulfur, selenium, tellurium, and phosphorous. Angew Chem Int Ed Engl. 1965;4:1007–13.CrossrefGoogle Scholar

  • [41]

    Abel, EW, DB Brady, and BC Crosse. The cleavage of organotin-sulphur compounds by halides. J Organomet Chem. 1966;5:260–2.CrossrefGoogle Scholar

  • [42]

    Woodward, P, LF Dahl, EW Abel, and BC Crosse. A new type of cyclic transition metal complex, [Ni(SC2H5)2]6. J Am Chem Soc. 1965;87:5251–3.CrossrefGoogle Scholar

  • [43]

    Do, Y, ED Simhon, and RH Holm. Improved syntheses of [Fe2S2Cl4]2- and [Fe2OCl6]2- and oxo/sulfido ligand substitution by use of silylsulfide reagents. Inorg Chem. 1983;22:3809–12.CrossrefGoogle Scholar

  • [44]

    Fenske, D, J Hachgenei, and J Ohmer. Novel cobalt‐ and nickel‐clusters with S and PPh3 as ligands; crystal structures of [Co7S6(PPh3)5Cl2], [Co6S8(PPh3)6]+[CoCl3(THF)], [Ni8S6Cl2(PPh3)6], and [Ni8S5(PPh3)7]. Angew Chem Int Ed Engl. 1985;24:706–9.CrossrefGoogle Scholar

  • [45]

    Fenske, D, J Ohmer, and J Hachgenei. New Co and Ni clusters with Se and PPh3 as ligands: [Co43‐Se)4(PPh3)4], [Co63‐Se)8(PPh3)6], [Co94‐Se)33‐Se)8(PPh3)6], and [Ni345‐Se)24‐Se)20(PPh3)10]. Angew Chem Int Ed Engl. 1985;24:993–5.CrossrefGoogle Scholar

  • [46]

    Christou, V, and J Arnold. Synthesis of reactive homoleptic tellurolates of zirconium and hafnium and their conversion to terminal tellurides: a model for the first step in a molecule-to-solid transformation. J Am Chem Soc. 1992;114:6240–2.CrossrefGoogle Scholar

  • [47]

    Christou, V, and J Arnold. Formation of monomeric terminal chalcogenides by template-induced disilylchalcogenide elimination; the crystal structures of [ETa{(Me3SiNCH2CH2)3N}] (E = Se, Te). Angew Chem Int Ed Engl. 1993;32:1450–2.CrossrefGoogle Scholar

  • [48]

    Liang, H-C, and PA Shapley. Synthesis and reactivity of [PPh4][Ru(N)Me3(SSiMe3)], a ruthenium(VI) trimethylsilanethiolate complex. Organometallics. 1996;15:1331–3.CrossrefGoogle Scholar

  • [49]

    Tran, DTT, NJ Taylor, and JF Corrigan. Copper chalcogenolate complexes as precursors to ternary nanoclusters: synthesis and characterization of [Hg15Cu20S25(nPr3P)18]. Angew Chem Int Ed. 2000;39:935–7.CrossrefGoogle Scholar

  • [50]

    Tran, DTT, LMC Beltran, CM Kowalchuk, NR Trefiak, NJ Taylor, and JF Corrigan. Ternary nanoclusters of CuHgS, CuHgSe, and CulnS. Inorg Chem. 2002;41:5693–8.CrossrefGoogle Scholar

  • [51]

    Komuro, T, H Kawaguchi, and K Tatsumi. Synthesis and reactions of triphenylsilanethiolato complexes of manganese(II), iron(II), cobalt(II), and nickel(II). Inorg Chem. 2002;41:5083–90.PubMedCrossrefGoogle Scholar

  • [52]

    Komuro, T, T Matsuo, H Kawaguchi, and K Tatsumi. Synthesis and structural characterization of silanethiolato complexes having tert-butyldimethylsilyl and trimethylsilyl groups. Dalton Trans. 2004;1618–25.PubMedGoogle Scholar

  • [53]

    Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, et al. Surface derivatization and isolation of semiconductor cluster molecules. J Am Chem Soc. 1988;110:3046–50.CrossrefGoogle Scholar

  • [54]

    García-Rodríguez, R, MP Hendricks, BM Cossairt, H Liu, and JS Owen. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem Mater. 2013;25:1233–49.CrossrefGoogle Scholar

  • [55]

    Eichhöfer, A, G Buth, S Lebedkin, M Kühn, and F Weigend. Luminescence in phosphine-stabilized copper chalcogenide cluster molecules - A comparative study. Inorg Chem. 2015;54:9413–22.CrossrefPubMedGoogle Scholar

  • [56]

    Sevillano P, Fuhr O, Hampe O, Lebedkin S, Neiss C, Ahlrichs R, et al. Synthesis, characterization and quantum mechanical calculations of [Au18Se8(dppthph)6]Cl2. Eur J Inorg Chem. 2007;2007:5163–7.CrossrefGoogle Scholar

  • [57]

    Sevillano, P, O Fuhr, and D Fenske. Synthesis and structure of [Au10Se5(dppa)4{Co2(CO)5}4]. Z Anorg Allg Chem. 2007;633:1783–6.CrossrefGoogle Scholar

  • [58]

    Yu, W, O Fuhr, and D Fenske. Derivatives of bis(diphenylphosphino)maleic anhydride as ligands in polynuclear gold(I) complexes. J Clust Sci. 2012;23:753–66.CrossrefGoogle Scholar

  • [59]

    Kumar, GA, RE Riman, and JG Brennan. NIR emission from molecules and clusters with lanthanide-chalcogen bonds. Coord Chem Rev. 2014;273-274:111–24.CrossrefGoogle Scholar

  • [60]

    Bechlars, B, R Feuerhake, and D Fenske. Syntheses and crystal structures of novel chalcogenido-bridged niobium copper clusters. Z Anorg Allg Chem. 2007;633:2603–13.Google Scholar

  • [61]

    Bechlars, B, I Issac, R Feuerhake, R Clérac, O Fuhr, and D Fenske. Syntheses, structures and magnetic properties of new chalcogen-bridged heterodimetallic cluster compounds with heterocubane structure. Eur J Inorg Chem. 2008;2008:1632–44.CrossrefGoogle Scholar

  • [62]

    Sola, J, Y Do, JM Berg, and RH Holm. Soluble sulfides of niobium(V) and tantalum(V): synthesis, structures, and properties of the fivefold symmetric cages [M6S17]4-. Inorg Chem. 1985;24:1706–13.CrossrefGoogle Scholar

  • [63]

    Lorenz, A, and D Fenske. Chalcogenoniobates as reagents for the synthesis of new heterobimetallic niobium coinage metal chalcogenide clusters. Z Anorg Allg Chem. 2001;627:2232–48.Google Scholar

  • [64]

    Robles, V, JF Trigo, C Guillén, and J Herrero. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: influence of the ratio Cu/Sn. J Alloys Cmpd. 2015;642:40–4.CrossrefGoogle Scholar

  • [65]

    Eichhöfer A, Jiang J, Lebedkin S, Fenske D, McDonald DG, Corrigan JF, et al. A ternary Cu–Sn–S cluster complex - (NBu4)[Cu19S28(SnPh)12(PEt2Ph)3]. Dalton Trans. 2012;41:3321–7.PubMedCrossrefGoogle Scholar

  • [66]

    Kühn, M, S Lebedkin, F Weigend, and A Eichhöfer. Optical properties of trinuclear metal chalcogenolate complexes – Room temperature NIR fluorescence in [Cu2Ti(SPh)6(PPh3)2]. Dalton Trans. 2017;46:1502–9.CrossrefGoogle Scholar

  • [67]

    Eichhöfer, A, M Kühn, S Lebedkin, M Kehry, MM Kappes, and F Weigend. Synthesis and optical properties of [Cu6E6(SnPh)2(PPh2Et)6] (E = S, Se, Te) cluster molecules. Inorg Chem. 2017;56:9330–6.CrossrefGoogle Scholar

  • [68]

    Hauser, R, and K Merzweiler. [(PhSnS3)2(CuPPhMe2)6], a hexanuclear copper(I) complex with PhSnS3 ligands. Z Anorg Allg Chem. 2002;628:905–6.Google Scholar

  • [69]

    Turner, EA, Y Huang, and JF Corrigan. Me3Si-SeS-SiMe3: a reagent for the synthesis of the mixed sulfo-selenide cluster [Cu84Se42-xSx(PEt2Ph)24]. Z Anorg Allg Chem. 2007;633:2135–7.CrossrefGoogle Scholar

  • [70]

    Tolman, CA. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev. 1977;77:313–48.CrossrefGoogle Scholar

  • [71]

    Choi B, Capozzi B, Ahn S, Turkiewicz A, Lovat G, Nuckolls C, et al. Solvent-dependent conductance decay constants in single cluster junctions. Chem Sci. 2016;7:2701–5.CrossrefPubMedGoogle Scholar

  • [72]

    Lovat, G, B Choi, DW Paley, ML Steigerwald, L Venkataraman, and X Roy. Room-temperature current blockade in atomically defined single-cluster junctions. Nat Nanotechnol. 2017;12:1050–4.PubMedCrossrefGoogle Scholar

  • [73]

    Khadka, CB, B Khalili Najafabadi, M Hesari, MS Workentin, and JF Corrigan. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands. Inorg Chem. 2013;52:6798–805.CrossrefPubMedGoogle Scholar

  • [74]

    Dance, IG. The structural chemistry of metal thiolate complexes. Polyhedron. 1986;5:1037–104.CrossrefGoogle Scholar

  • [75]

    Concepción Gimeno, M. Thiolates, selenolates, and tellurolates. In F.A. Devillanova, ed. Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium. Cambridge, UK: Royal Society of Chemistry; 2007. p. 33–80.Google Scholar

  • [76]

    Gysling, HJ. The ligand chemistry of tellurium. Coord Chem Rev. 1982;42:133–244.CrossrefGoogle Scholar

  • [77]

    Arnold, J. The chemistry of metal complexes with selenolate and tellurolate ligands. In K.D. Karlin, ed. Progress in inorganic chemistry. Vol. 43. New York: John Wiley & Sons Inc; 1995. p. 353–417.Google Scholar

  • [78]

    Veselska, O, and A Demessence. d10 coinage metal organic chalcogenolates: from oligomers to coordination polymers. Coord Chem Rev. 2018;325:240–70.Google Scholar

  • [79]

    Eichhöfer A, Jiang J-J, Sommer H, Weigend F, Fuhr O, Fenske D, et al. 1-D-tin(II) phenylchalcogenolato complexes Sn(EPh)2] (E = S, Se, Te) - Synthesis, structures, quantum chemical studies and thermal behaviour. Eur J Inorg Chem. 2010;2010:410–8.CrossrefGoogle Scholar

  • [80]

    Eichhöfer, A, PT Wood, R Viswanath, and RA Mole. Synthesis, structure and magnetic behaviour of manganese(II) selenolate complexes Mn(SePh)2], [Mn(SePh)2(bipy)2] and [Mn(SePh)2(phen)2] (bipy = bipyridyl, phen = phenanthroline). Eur J Inorg Chem. 2007;2007:4794–9.CrossrefGoogle Scholar

  • [81]

    Sommer, H, A Eichhöfer, and D Fenske. Synthesis and crystal structures of bismuth chalcogenolato compounds Bi(SC6H5)3, Bi(SeC6H5)3, and Bi(S-4-CH3C6H4)3. Z Anorg Allg Chem. 2008;634:436–40.CrossrefGoogle Scholar

  • [82]

    Eichhöfer, A, G Buth, F Dolci, K Fink, RA Mole, and PT Wood. Homoleptic 1-D iron selenolate complexes-synthesis, structure, magnetic and thermal behaviour of Fe(SeR)2] (R=Ph, Mes). Dalton Trans. 2011;40:7022–32.CrossrefPubMedGoogle Scholar

  • [83]

    Kluge, O, K Grummt, R Biedermann, and H Krautscheid. Trialkylphosphine-stabilized copper(I) phenylchalcogenolate complexes - Crystal structures and copper–Chalcogenolate bonding. Inorg Chem. 2011;50:4742–52.CrossrefGoogle Scholar

  • [84]

    Fu, M-L, D Fenske, B Weinert, and O Fuhr. One-dimensional coordination polymers containing polynuclear (selenolato)copper complexes linked by bipyridine ligands. Eur J Inorg Chem. 2010;2010:1098–102.CrossrefGoogle Scholar

  • [85]

    Humenny, WJ, S Mitzinger, CB Khadka, B Khalili Najafabadi, I Vieira, and JF Corrigan. N-heterocyclic carbene stabilized copper- and silver-phenylchalcogenolate ring complexes. Dalton Trans. 2012;41:4413–22.PubMedCrossrefGoogle Scholar

  • [86]

    Choi, B, DW Paley, T Siegrist, ML Steigerwald, and X Roy. Ligand control of manganese telluride molecular cluster core nuclearity. Inorg Chem. 2015;54:8348–55.CrossrefPubMedGoogle Scholar

  • [87]

    Malik, MA, M Afzaal, and P O'Brien. Precursor chemistry for main group elements in semiconducting materials. Chem Rev. 2010;110:4417–46.PubMedCrossrefGoogle Scholar

  • [88]

    Bendt, G, A Weber, S Heimann, W Assenmacher, O Prymak, and S Schulz. Wet-chemical synthesis of different bismuth telluride nanoparticles using metal organic precursors – Single source vs. dual source approach. Dalton Trans. 2015;44: 14272–80. and references therein.CrossrefPubMedGoogle Scholar

  • [89]

    Knapp, CE, and CJ Carmalt. Solution based CVD of main group materials. Chem Soc Rev. 2016;45:1036–64.CrossrefPubMedGoogle Scholar

  • [90]

    Schulz, S, S Heimann, J Friedrich, M Engenhorst, G Schierning, and W Assenmacher. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te. Chem Mater. 2012;24:2228–34.CrossrefGoogle Scholar

  • [91]

    Bendt, G, S Schulz, S Zastrow, and K Nielsch. Single-source precursor-based deposition of Sb2Te3 films by MOCVD. Chem Vap Deposition. 2013;19:235–41.CrossrefGoogle Scholar

  • [92]

    Benjamin SL, De Groot CH, Gurnani C, Hector AL, Huang R, Koukharenko E, et al. Controlling the nanostructure of bismuth telluride by selective chemical vapour deposition from a single source precursor. J Mater Chem A. 2014;2:4865–69.CrossrefGoogle Scholar

  • [93]

    Traut, S, AP Hähnel, and C Von Hänisch. Dichloro organosilicon bismuthanes as precursors for rare compounds with a bismuth–Pnictogen or bismuth–Tellurium bond. Dalton Trans. 2011;40:1365–71.CrossrefPubMedGoogle Scholar

  • [94]

    Heimann, S, D Bläser, C Wölper, and S Schulz. Solid-state structures of bis(diethylbismuthanyl)sulfane, -selenane, and -tellurane. Organometallics. 2014;33:2295–300.CrossrefGoogle Scholar

  • [95]

    Heimann S, Kuczkowski A, Bläser D, Wölper C, Haack R, Jansen G, et al. Syntheses and solid-state structures of Et2SbTeEt and Et2BiTeEt. Eur J Inorg Chem. 2014;2014:4858–64.Google Scholar

  • [96]

    Traut, S, S Stahl, A Eichhöfer, and C Von Hänisch. Synthesis, structure and thermal decomposition of the bismuth silyltellurolate Bi(TeSitBu2Ph)3. Z Anorg Allg Chem. 2015;641:1200–2.CrossrefGoogle Scholar

  • [97]

    Traut, S, C Von Hänisch, AP Hähnel, and S Stahl. Cyclic and polycyclic tellurium–Tin and tellurium–Lead compounds – Synthesis, structures and thermal decomposition. Chem Commun. 2012;48:6984–6.CrossrefGoogle Scholar

  • [98]

    Seligson, AL, and J Arnold. Synthesis, structure, and reactivity of homoleptic tin(II) and lead(II) chalcogenolates and their conversion to metal chalcogenides. X-ray crystal structures of {Sn[TeSi(SiMe3)3]2}2 and (PMe3)Sn[TeSi(SiMe3)3]2. J Am Chem Soc. 1993;115:8214–20.CrossrefGoogle Scholar

  • [99]

    Fuhrmann, D, T Severin, and H Krautscheid. Synthesis and crystal structures of copper zinc phenylthiolate and the first copper zinc selenolate and tellurolate complexes. Z Anorg Allg Chem. 2017;643:932–7.CrossrefGoogle Scholar

  • [100]

    Sommer, H, A Eichhöfer, N Drebov, R Ahlrichs, and D Fenske. Preparation, geometric and electronic structures of [Bi2Cu4(SPh)8(PPh3)4] with a Bi2 dumbbell, [Bi4Ag3(SePh)6Cl3(PPh3)3]2 and [Bi4Ag3(SePh)6X3(PPhiPr2)3]2 (X = Cl, Br) with a Bi4 unit. Eur J Inorg Chem. 2008;2008:5138–45.CrossrefGoogle Scholar

  • [101]

    Hu, B, C-Y Su, D Fenske, and O Fuhr. Synthesis, characterization and optical properties of a series of binuclear copper chalcogenolato complexes. Inorg Chim Acta. 2014;419:118–23.CrossrefGoogle Scholar

  • [102]

    Azizpoor Fard, M, B Khalili Najafabadi, M Hesari, MS Workentin, and JF Corrigan. New polydentate trimethylsilyl chalcogenide reagents for the assembly of polyferrocenyl architectures. Chem – Eur J. 2014;20:7037–47.CrossrefGoogle Scholar

  • [103]

    Azizpoor Fard, M, MJ Willans, B Khalili Najafabadi, TI Levchenko, and JF Corrigan. Polydentate chalcogen reagents for the facile preparation of Pd2 and Pd4 complexes. Dalton Trans. 2015;44:8267–77.PubMedCrossrefGoogle Scholar

  • [104]

    Labande, A, J Ruiz, and D Astruc. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. J Am Chem Soc. 2002;124:1782–9.CrossrefPubMedGoogle Scholar

  • [105]

    Stiles, RL, R Balasubramanian, SW Feldberg, and RW Murray. Anion-induced adsorption of ferrocenated nanoparticles. J Am Chem Soc. 2008;130:1856–65.CrossrefPubMedGoogle Scholar

  • [106]

    Uosaki, K, T Kondo, M Okamura, and W Song. Electron and ion transfer through multilayers of gold nanoclusters covered by self-assembled monolayers of alkylthiols with various functional groups. Faraday Discuss. 2002;121:373–89.CrossrefGoogle Scholar

  • [107]

    Nitschke, C, AI Wallbank, D Fenske, and JF Corrigan. Facile synthesis of high nuclearity silver-ferrocenyldiselenolate clusters. J Clust Sci. 2007;18:131–40.CrossrefGoogle Scholar

  • [108]

    The only exception to this is for platinum(II) and palladium(II) complexes[(fcSe2)M(PnBu3)]2 (M = Pd, Pt), and [(fcSe2)Pd(PnBu2)2] from Brown MJ, Corrigan JF. Synthesis, characterization and electrochemistry of ferrocenylselenolate bridged palladium(II) and platinum(II) complexes. J Organomet Chem. 2004;689:2872–9.Google Scholar

  • [109]

    Ahmar, S, C Nitschke, N Vijayaratnam, DG MacDonald, D Fenske, and JF Corrigan. A ferrocenylmethylselenolate complex of Ag(I): preparation of the polyferrocenyl cluster [Ag8(SeCH2Fc)8(PPh3)4] from the new silylated reagent FcCH2SeSiMe3. New J Chem. 2011;35:2013–7.CrossrefGoogle Scholar

  • [110]

    Ahmar, S, DG MacDonald, N Vijayaratnam, TL Battista, MS Workentin, and JF Corrigan. A nanoscopic 3D polyferrocenyl assembly: the triacontakaihexa(ferrocenylmethylthiolate) [Ag484-S)62/3-SCH2Fc)36]. Angew Chem Int Ed. 2010;49:4422–4.CrossrefGoogle Scholar

  • [111]

    MacDonald, DG, and JF Corrigan. New reagents for the synthesis of a series of ferrocenoyl functionalized copper and silver chalcogenolate complexes. Dalton Trans. 2008;5048–53.PubMedGoogle Scholar

  • [112]

    MacDonald, DG, A Eichhöfer, CF Campana, and JF Corrigan. Ferrocene-based trimethylsilyl chalcogenide reagents for the assembly of functionalized metal-chalcogen architectures. Chem – Eur J. 2011;17:5890–902.CrossrefGoogle Scholar

  • [113]

    Anson CE, Eichhöfer A, Issac I, Fenske D, Fuhr O, Sevillano P, et al. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [AgSe77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114]. Angew Chem Int Ed. 2008;47:1326–31.CrossrefGoogle Scholar

  • [114]

    Duan, T, X-Z Zhang, and Q-F Zhang. Synthesis and crystal structure of a polynuclear copper-selenide cluster [CuI36(CuIICl)2Se13(SePh)12(dppe)6]·3EtOH. Z Naturforsch B. 2008;63:941–4.CrossrefGoogle Scholar

  • [115]

    Nayek, HP, W Massa, and S Dehnen. Presence or absence of a central Se atom in silver selenide/selenolate clusters with halite topology: syntheses and properties of [(Ph3PAg)8Ag66- Se)1-x/2(SePh)]x+ (x = 0, 1). Inorg Chem. 2010;49:144–9.CrossrefGoogle Scholar

  • [116]

    Corrigan, JF, and D Fenske. New copper telluride clusters by light-induced tellurolate-telluride conversions. Angew Chem Int Ed Engl. 1997;36:1981–3.CrossrefGoogle Scholar

  • [117]

    Levchenko TI, Kübel C, Khalili Najafabadi B, Boyle PD, Cadogan C, Goncharova LV, et al. Luminescent CdSe superstructures: a nanocluster superlattice and a nanoporous crystal. J Am Chem Soc. 2017;139:1129–44.CrossrefGoogle Scholar

  • [118]

    Fu, M-L, I Issac, D Fenske, and O Fuhr. Metal-rich copper chalcogenide clusters at the border between molecule and bulk phase: the structures of [Cu93Se42(SeC6H4SMe)9(PPh3)18], [Cu96Se45(SeC6H4SMe)6(PPh3)18], and [Cu136S56(SCH2C4H3O)24(dpppt)10]. Angew Chem Int Ed. 2010;49:6899–903.CrossrefGoogle Scholar

  • [119]

    Fenske, D, N Zhu, and T Langetepe. Synthesis and structure of new Ag−Se clusters: [Ag30Se8(SetBu)14(PnPr3)8], [Ag90Se38(SetBu)14(PEt3)22], [Ag114Se34(SenBu)46(PtBu3)14], [Ag112Se32(SenBu)48(PtBu3)12], and [Ag172Se40(SenBu)92(dppp)4]. Angew Chem Int Ed. 1998;37:2639–44.CrossrefGoogle Scholar

  • [120]

    Eichhöfer, A, PT Wood, RN Viswanath, and RA Mole. Synthesis, structure and physical properties of the manganese(II) selenide/selenolate cluster complexes [Mn32Se14(SePh)36(PnPr3)4] and [Na(benzene-15-crown-5)(C4H8O)2]2[Mn8Se(SePh)16]. Chem Commun. 2008;14:1596–8.Google Scholar

  • [121]

    Matheis, K, A Eichhöfer, F Weigend, OT Ehrler, O Hampe, and MM Kappes. Probing the influence of size and composition on the photoelectron spectra of cadmium chalcogenide cluster dianions. J Phys Chem C. 2012;116:13800–9.CrossrefGoogle Scholar

  • [122]

    Eichhöfer A, Olkowska-Oetzel J, Fenske D, Fink K, Mereacre V, Powell AK, et al. Synthesis and structure of an “iron-doped” copper selenide cluster molecule: [Cu30Fe2Se6(SePh)24(dppm)4]. Inorg Chem. 2009;48:8977–84.PubMedCrossrefGoogle Scholar

  • [123]

    Eichhöfer, A, D Fenske, and J Olkowska-Oetzel. Synthesis and structure of [nPr3N(CH2)6NnPr3][CuFe3Br3(SePh)6], [Cu5Fe(SePh)7(PPh3)4], and [Cu4Fe3(SePh)10(PPh3)4]. Eur J Inorg Chem. 2007;2007:74–9.CrossrefGoogle Scholar

  • [124]

    Zhu, N, and D Fenske. Novel Cu–Se clusters with Se–Layer structures: [Cu32Se7(SenBu)18(PiPr3)6], [Cu50Se20(SetBu)10(PiPr3)10], [Cu73Se35(SePh)3(PiPr3)21], [Cu140Se70(PEt3)34] and [Cu140Se70(PEt3)36]. J Chem Soc, Dalton Trans. 1999;1067–75.Google Scholar

  • [125]

    Eichhöfer, A, O Hampe, S Lebedkin, and F Weigend. Bistrimethylsilylamide transition-metal complexes as starting reagents in the synthesis of ternary Cd−Mn−Se cluster complexes. Inorg Chem. 2010;49:7331–9.CrossrefPubMedGoogle Scholar

  • [126]

    MacDonald, DG, C Kübel, and JF Corrigan. Ferrocenyl functionalized silver-chalcogenide nanoclusters. Inorg Chem. 2011;50:3252–61.PubMedCrossrefGoogle Scholar

  • [127]

    Fuhr, O, L Fernandez-Recio, A Castiñeiras, and D Fenske. Synthesis and structure of the clusters [Cu50Se24(S-thiaz)2(dppm)10] and [Cu48Se24(S-thiazH)2(dppm)10]. Z Anorg Allg Chem. 2007;633:700–4.CrossrefGoogle Scholar

  • [128]

    Fernandez-Recio, L, D Fenske, and O Fuhr. Copper chalcogenide cluster compounds with nitro-functionalized ligand shell. Z Anorg Allg Chem. 2008;634:2853–7.Google Scholar

  • [129]

    Langer, R, B Breitung, L Wünsche, D Fenske, and O Fuhr. Functionalised silver chalcogenide clusters. Z Anorg Allg Chem. 2011;637:995–1006.CrossrefGoogle Scholar

  • [130]

    Langer, R, W Yu, L Wünsche, G Buth, O Fuhr, and D Fenske. Syntheses and structure determination of trimethylsiloxy functionalized copper chalcogenide clusters. Z Anorg Allg Chem. 2011;637:1834–40.Google Scholar

  • [131]

    Langer, R, D Fenske, and O Fuhr. [Cu40Se16(S-C6H4-CN)8(dppm)8]: a disc-like copper cluster with a nitrile-functionalized ligand shell. Z Naturforsch B. 2013;68:575–80.CrossrefGoogle Scholar

  • [132]

    Vahrenkamp, H. Metallorganische lewis-basen, II. Organometallische Schwefelkomplexe Des Molybdäns, Mangans, Rheniums Und Eisens. Chem Ber. 1970;103:3580–90.CrossrefGoogle Scholar

  • [133]

    Vergamini, PJ, H Vahrenkamp, and LF Dahl. Organometallic chalcogen complexes. XXIII. Preparation and structural characterization of a mixed transition metal cluster complex, [Re2Mo(η5-C5H5)(CO)8](S)[SMo(η5-C5H5)(CO)3], containing triply and quadruply bridging sulfur atoms. New synthetic route to highly clustered metal-sulfur systems. J Am Chem Soc. 1971;93:6326–7.Google Scholar

  • [134]

    S-B, Y. The Preparation and Structure of Mo2(OAc)2(SSiMe3)2(PEt3)2. Polyhedron. 1992;11:2115–7.CrossrefGoogle Scholar

  • [135]

    Dehnen, S, and D Fenske. [Cu24S12(PMeiPr2)12], [Cu28S14(PtBu2Me)12], [Cu50S25(PtBu2Me)16], [Cu70Se35(PtBu2Me)21], [Cu31Se15(SeSiMe3)(PtBu2Me)12] and [Cu48Se24(PMe2Ph)20]: new sulfur- and selenium-bridged copper clusters. Chem – Eur J. 1996;2:1407–16.CrossrefGoogle Scholar

  • [136]

    DeGroot, MW, NJ Taylor, and JF Corrigan. Zinc chalcogenolate complexes as capping agents in the synthesis of ternary II−II′−VI nanoclusters: structure and photophysical properties of [(N, N'-tmeda)5Zn5Cd11Se13(SePh)6(thf)2]. J Am Chem Soc. 2003;125:864–65.PubMedCrossrefGoogle Scholar

  • [137]

    DeGroot, MW, KM Atkins, A Borecki, H Rösner, and JF Corrigan. A molecular precursor approach for the synthesis of composition-controlled ZnxCd1-xS and ZnxCd1-xSe nanoparticles. J Mater Chem. 2008;18:1123–30.CrossrefGoogle Scholar

  • [138]

    Biedermann, R, O Kluge, D Fuhrmann, and H Krautscheid. Synthesis and crystal structures of [(iPr3P)2Cu(μ-ESiMe3)(InMe3)] (E = S, Se): lewis acid-base adducts with chalcogen atoms in planar coordination. Eur J Inorg Chem. 2013;2013:4727–31.CrossrefGoogle Scholar

  • [139]

    Kluge, O, M Puidokait, R Biedermann, and H Krautscheid. Synthesis and crystal structures of spirocyclic gallium and indium chalcogen heterocycles [(Me2Ga)6S(SSiMe3)4], [(Me2Ga)6Se(SeSiMe3)4] and [(Me2In)6S(SSiMe3)4]. Z Anorg Allg Chem. 2007;633:2138–40.CrossrefGoogle Scholar

  • [140]

    Kluge, O, R Biedermann, J Holldorf, and H Krautscheid. Organo-gallium/indium chalcogenide complexes of copper(I): molecular structures and thermal decomposition to ternary semiconductors. Chem – Eur J. 2014;20:1318–31.CrossrefGoogle Scholar

  • [141]

    Fuhrmann, D, S Dietrich, and H Krautscheid. Zinc tin chalcogenide complexes and their evaluation as molecular precursors for Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Inorg Chem. 2017;56:13123–31.CrossrefPubMedGoogle Scholar

  • [142]

    Khadka, CB, DG MacDonald, Y Lan, AK Powell, D Fenske, and JF Corrigan. Trimethylsilylchalcogenolates of Co(II) and Mn(II): from mononuclear coordination complexes to clusters containing -ESiMe3 moieties (E = S, Se). Inorg Chem. 2010;49:7289–97.CrossrefGoogle Scholar

  • [143]

    Khadka, CB, A Eichhöfer, F Weigend, and JF Corrigan. Zinc chalcogenolate complexes as precursors to ZnE and Mn/ZnE (E = S, Se) clusters. Inorg Chem. 2012;51:2747–56.CrossrefGoogle Scholar

  • [144]

    Borecki, A, and JF Corrigan. New copper and silver trimethylsilylchalcogenolates. Inorg Chem. 2007;46:2478–84.CrossrefPubMedGoogle Scholar

  • [145]

    Azizpoor Fard, M, F Weigend, and JF Corrigan. Simple but effective: thermally stable Cu-ESiMe3 via NHC ligation. Chem Commun. 2015;51:8361–4.CrossrefGoogle Scholar

  • [146]

    Azizpoor Fard, M, TI Levchenko, C Cadogan, WJ Humenny, and JF Corrigan. Stable -ESiMe3 complexes of CuI and AgI (E=S, Se) with NHCs: synthons in ternary nanocluster assembly. Chem – Eur J. 2016;22:4543–50.CrossrefGoogle Scholar

  • [147]

    Polgar, AM, F Weigend, A Zhang, MJ Stillman, and JF Corrigan. A N-heterocyclic carbene-stabilized coinage metal-chalcogenide framework with tunable optical properties. J Am Chem Soc. 2017;139:14045–8.PubMedCrossrefGoogle Scholar

  • [148]

    Krebs, B. Thio- and seleno-compounds of main group elements - Novel inorganic oligomers and polymers. Angew Chem Int Ed Engl. 1983;22:113–34.CrossrefGoogle Scholar

  • [149]

    Kromm, A, and WS Sheldrick. Synthesis and structures of dimanganese(II) complexes with spirotricyclic [Mn(μ-Ge2Se7)Mn] and [Mn(μ-Sn2Se6)Mn] cores. Z Anorg Allg Chem. 2008;634:1005–10.CrossrefGoogle Scholar

  • [150]

    Zhang, G, P Li, and J Ding. Surfactant-thermal syntheses, structures, and magnetic properties of Mn–Ge–Sulfides/selenides. Inorg Chem. 2014;53:10248–56.CrossrefPubMedGoogle Scholar

  • [151]

    Yaghi, OM, Z Sun, DA Richarson, and TL Groy. Directed transformation of molecules to solids: synthesis of a microporous sulfide from molecular germanium sulfide cages. J Am Chem Soc. 1994;116:807–8.CrossrefGoogle Scholar

  • [152]

    Bag, S, PN Trikalitis, PJ Chupas, GS Armatas, and MG Kanatzidis. Porous semiconducting gels and aerogels from chalcogenide clusters. Science. 2007;317:490–3.CrossrefPubMedGoogle Scholar

  • [153]

    Bag, S, IU Arachchige, and MG Kanatzidis. Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem. 2008;18:3628–32.CrossrefGoogle Scholar

  • [154]

    Bag, S, and MG Kanatzidis. Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of Surface Polarizability on Selectivity in Gas Separation. J Am Chem Soc. 2010;132:14951–9.CrossrefPubMedGoogle Scholar

  • [155]

    Ruzin, E, and S Dehnen. Influence of the counterions on the structures of ternary Zn/Sn/Se anions: synthesis and properties of [Rb10(H2O)14.5][Zn44-Se)2(SnSe4)4] and [Ba5(H2O)32][Zn5Sn(μ3-Se)4(SnSe4)4]. Z Anorg Allg Chem. 2006;632:749–55.CrossrefGoogle Scholar

  • [156]

    Melullis, M, R Clérac, and S Dehnen. Ternary Mn/Ge/Se anions from reactions of [Ba2(H2O)9][GeSe4]: synthesis and characterization of compounds containing discrete or polymeric [Mn6Ge4Se17]6– Units. Chem Commun. 2005;6008–10.Google Scholar

  • [157]

    Zimmermann, C, M Melullis, and S Dehnen. Reactivity of chalcogenostannate salts: unusual synthesis and structure of a compound containing ternary cluster anions [Co44-Se)(SnSe4)4]10-. Angew Chem Int Ed. 2002;41:4269–72.CrossrefGoogle Scholar

  • [158]

    Dehnen, S, and MK Brandmeyer. Reactivity of chalcogenostannate compounds: syntheses, crystal structures, and electronic properties of novel compounds containing discrete ternary anions [MII44-Se)(SnSe4)4]10- (MII = Zn, Mn). J Am Chem Soc. 2003;125:6618–9.CrossrefPubMedGoogle Scholar

  • [159]

    Brandmeyer, MK, R Clérac, F Weigend, and S Dehnen. Ortho-chalcogenostannates as ligands: syntheses, crystal structures, electronic properties, and magnetism of novel compounds containing ternary anionic substructures [M44-Se)(SnSe4)4]10− (M=Mn, Zn, Cd, Hg), [Hg44-Se)(SnSe4)3]6−}, or [HgSnSe4]2−}. Chem – Eur J. 2004;10:5147–57.CrossrefGoogle Scholar

  • [160]

    Ruzin, E, A Fuchs, and S Dehnen. Fine-tuning of optical properties with salts of discrete or polymeric, heterobimetallic telluride anions [M44-Te)(SnTe4)4]10− (M = Mn, Zn, Cd, Hg) and [Hg44-Te)(SnTe4)3]6−}. Chem Commun. 2006;4796–8.Google Scholar

  • [161]

    Ruzin, E, C Zimmermann, P Hillebrecht, and S Dehnen. Syntheses and structures of solvated tetrasodiumtetrachalcogenostannates [Na4(en)4][SnE4] (en = 1,2-diaminoethane; E = Te, Se), and their reactions toward further ternary or quaternary chalcogenometallates [Mn(en)3]2[Sn2Te6]·4H2O or [Na10(H2O)34][Mn44-Se)(SnSe4)4]. Z Anorg Allg Chem. 2007;633:820–9.Google Scholar

  • [162]

    Santner, S, and S Dehnen. [M4Sn4Se17]10– Cluster anions (M = Mn, Zn, Cd) in a Cs+ environment and as ternary precursors for ionothermal treatment. Inorg Chem. 2015;54:1188–90.CrossrefGoogle Scholar

  • [163]

    Dhingra, SS, and RC Haushalter. One dimensional inorganic polymers: synthesis and structural characterization of the main-group metal polymers K2HgSnTe4, (Et4N)2HgSnTe4, (Ph4P)GeInTe4, and RbInTe2. Chem Mater. 1994;6:2376–81.CrossrefGoogle Scholar

  • [164]

    Zimmermann, C, and S Dehnen. Cs2[MnSnTe4]: uncommon synthesis of a quaternary phase based on one-dimensional, ternary anionic chains. Z Anorg Allg Chem. 2003;629:1553–6.Google Scholar

  • [165]

    Thiele G, Peter S, Schwarzer M, Ruzin E, Clérac R, Staesche H, et al. Heterobimetallic chalcogenidometallate strands: synthesis, structure, magnetism, and conductivity. Inorg Chem. 2012;51:3349–51.PubMedCrossrefGoogle Scholar

  • [166]

    Haddadpour S, Melullis M, Staesche H, Mariappan CR, Roling B, Clérac R, et al. Inorganic frameworks from selenidotetrelate anions [T2Se6]4− (T = Ge, Sn): synthesis, structures, and ionic conductivity of [K2(H2O)3][MnGe4Se10] and (NMe4)2[MSn4Se10] (M = Mn, Fe). Inorg Chem. 2009;48:1689–98.CrossrefGoogle Scholar

  • [167]

    Tsamourtzi, K, J-H Song, T Bakas, AJ Freeman, PN Trikalitis, and MG Kanatzidis. Straightforward route to the adamantane clusters [Sn4Q10]4− (Q = S, Se, Te) and use in the assembly of open-framework chalcogenides (Me4N)2 M[Sn4Se10] (M = MnII, FeII0, CoII, ZnII) including the first telluride member (Me4N)2Mn[Ge4Te10]. Inorg Chem. 2008;47:11920–9.CrossrefGoogle Scholar

  • [168]

    Lips, F, and S Dehnen. One-size adjustable-gap cluster anions: systematic approach to multinary, water-soluble chalcogenidometalate compounds. Inorg Chem. 2008;47:5561–3.PubMedCrossrefGoogle Scholar

  • [169]

    Ding, N, C D-Y, and K Mg. K6Cd4Sn3Se13: a polar open-framework compound based on the partially destroyed supertetrahedral [Cd4Sn4Se17]10- cluster. Chem Commun. 2004;1170–1.Google Scholar

  • [170]

    Ruzin, E, E Zent, E Matern, W Massa, and S Dehnen. Syntheses, structures, and comprehensive NMR spectroscopic investigations of hetero-chalcogenidometallates: the right mix toward multinary complexes. Chem – Eur J. 2009;15:5230–44.CrossrefGoogle Scholar

  • [171]

    Finger, LH, B Scheibe, and J Sundermeyer. Synthesis of organic (trimethylsilyl)chalcogenolate salts Cat[TMS-E] (E = S, Se, Te): the methylcarbonate anion as a desilylating agent. Inorg Chem. 2015;54:9568–75.CrossrefGoogle Scholar

  • [172]

    Finger, LH, and J Sundermeyer. Halide-free synthesis of hydrochalcogenide ionic liquids of the type [Cation][HE] (E=S, Se, Te). Chem – Eur J. 2016;22:4218–30.CrossrefGoogle Scholar

  • [173]

    Donsbach, C, G Thiele, LH Finger, J Sundermeyer, and S Dehnen. Mercurates from a revised ionothermal synthesis route: the pseudo-flux approach. Inorg Chem. 2016;55:6725–30.CrossrefPubMedGoogle Scholar

  • [174]

    Lin, Y, W Massa, and S Dehnen. “Zeoball” [Sn36Ge24Se132]24– : a molecular anion with zeolite-related composition and spherical shape. J Am Chem Soc. 2012;134:4497–500.CrossrefPubMedGoogle Scholar

  • [175]

    Lin, Y, W Massa, and S Dehnen. Controlling the assembly of chalcogenide anions in ionic liquids: from binary Ge/Se through ternary Ge/Sn/Se to binary Sn/Se frameworks. Chem – Eur J. 2012;18:13427–34.CrossrefGoogle Scholar

  • [176]

    Lin Y, Xie D, Massa W, Mayrhofer L, Lippert S, Ewers B, et al. Changes in the structural dimensionality of selenidostannates in ionic liquids: formation, structures, stability, and photoconductivity. Chem – Eur J. 2013;19:8806–13.CrossrefGoogle Scholar

  • [177]

    Sheldrick, WS, and H-G Braunbeck. Preparation and crystal structure of Cs2Sn3Se7, a cesium selenostannate(IV) with pentacoordinated tin. Z Naturforsch B. 1990;45:1643–6.CrossrefGoogle Scholar

  • [178]

    Li, J-R, -W-W Xiong, Z-L Xie, C-F Du, G-D Zou, and X-Y Huang. From selenidostannates to silver-selenidostannate: structural variation of chalcogenidometallates synthesized in ionic liquids. Chem Commun. 2013;49:181–3.CrossrefGoogle Scholar

  • [179]

    Lin, Y, and S Dehnen. [BMIm]4[Sn9Se20]: ionothermal synthesis of a selenidostannate with a 3D open-framework structure. Inorg Chem. 2011;50:7913–5.PubMedCrossrefGoogle Scholar

  • [180]

    Xu, G-H, C Wang, and P Guo. Poly[[(pentaethylenehexamine)manganese(II)] [hepta-μ-selenido-tritin(IV)]]: a tin–Selenium net with remarkable flexibility. Acta Crystallogr. 2009;C65:m171–3.Google Scholar

  • [181]

    Dehnen, S, and C Zimmermann. A new route into single-crystalline partially oxidized cobalt compounds: reactions with Zintl-type hexaselenodistannate(III) K6Sn2Se6 as mild oxidant. Chem – Eur J. 2000;6:2256–61.CrossrefGoogle Scholar

  • [182]

    Zimmermann, C, CE Anson, and S Dehnen. Chalcogenido-bridged clusters by reactions of chalcogenostannate salts. J Clust Sci. 2007;18:618–29.CrossrefGoogle Scholar

  • [183]

    Thiele, G, Z You, and DS Molecular. CHEVREL-like clusters [(RhPPh3)63-Se)8] and [Pd63-Te)8]4–. Inorg Chem. 2015;54:2491–3.PubMedCrossrefGoogle Scholar

  • [184]

    Thiele, G, Y Franzke, F Weigend, and S Dehnen. {μ-PbSe}: a heavy CO homologue as an unexpected ligand. Angew Chem Int Ed. 2015;54:11283–8.CrossrefGoogle Scholar

  • [185]

    Eußner, JP, RO Kusche, and S Dehnen. Synthesis and thorough investigation of discrete organotin telluride clusters. Chem – Eur J. 2015;21:12376–88.CrossrefGoogle Scholar

  • [186]

    Dorfelt, C, A Janeck, D Kobelt, EF Paulus, and H Scherer. Röntgenstrukturanalyse von alkylthiostannonsäuren (monoalkylzinnsesquisulfiden). J Organomet Chem. 1968;14:P22–4.CrossrefGoogle Scholar

  • [187]

    Bouška M, Dostál L, Padělková Z, Lyčka A, Herres-Pawlis S, Jurkschat K, et al. Intramolecularly coordinated organotin tellurides: stable or unstable? Angew Chem Int Ed. 2012;51:3478–82.CrossrefGoogle Scholar

  • [188]

    Heimann, S, M Hołynska, and S Dehnen. Synthesis, structures, and light-induced transformation of keto-functionalized selenidogermanate complexes. Z Anorg Allg Chem. 2012;638:1663–6.CrossrefGoogle Scholar

  • [189]

    Barth, BEK, BA Tkachenko, JP Eußner, PR Schreiner, and S Dehnen. Diamondoid hydrazones and hydrazides: sterically demanding ligands for Sn/S cluster design. Organometallics. 2014;33:1678–88.CrossrefGoogle Scholar

  • [190]

    Leusmann, E, M Wagner, NW Rosemann, S Chatterjee, and S Dehnen. Synthesis, crystal structure, and photoluminescence studies of a ruthenocenyl-decorated Sn/S cluster. Inorg Chem. 2014;53:4228–33.CrossrefPubMedGoogle Scholar

  • [191]

    Leusmann, E, F Schneck, and S Dehnen. Functionalization of Sn/S clusters with hetero- and polyaromatics. Organometallics. 2015;34:3264–71.CrossrefGoogle Scholar

  • [192]

    Rinn, N, K Hanau, L Guggolz, A Rinn, S Chatterjee, and S Dehnen. Trigonal bipyramidal metalselenide clusters with palladium and tin atoms in various positions. Z Anorg Allg Chem. 2017;643:1508–12.CrossrefGoogle Scholar

  • [193]

    Rinn, N, L Guggolz, K Gries, K Volz, J Senker, and S Dehnen. Formation and structural diversity of organo-functionalized tin-silver selenide clusters. Chem – Eur J. 2017;23:15607–11.CrossrefGoogle Scholar

  • [194]

    Eußner, JP, and S Dehnen. Bronze, silver and gold: functionalized group 11 organotin sulfide clusters. Chem Commun. 2014;50:11385–8.CrossrefGoogle Scholar

  • [195]

    You, Z, J Bergunde, B Gerke, R Pöttgen, and S Dehnen. Ferrocenyl-functionalized Sn/Se and Sn/Te complexes: synthesis, reactivity, optical, and electronic properties. Inorg Chem. 2014;53:12512–8.CrossrefPubMedGoogle Scholar

  • [196]

    Komuro, T, T Matsuo, H Kawaguchi, and K Tatsumi. Copper and silver complexes containing the S(SiMe2S)22- ligand: efficient entries into heterometallic sulfido clusters. Angew Chem Int Ed. 2003;42:465–8.CrossrefGoogle Scholar

  • [197]

    Fard, HZ, L Xiong, C Müller, M Hołynska, and S Dehnen. Synthesis and reactivity of functionalized binary and ternary thiometallate complexes [(RT)4S6], [(RSn)3S4]2-, [(RT)2(CuPPh3)6S6], and [(RSn)6(OMe)6Cu2S6]4- (R = C2H4COOH, CMe2CH2COMe; T = Ge, Sn). Chem – Eur J. 2009;15:6595–604.CrossrefGoogle Scholar

About the article

Published Online: 2018-09-14


Citation Information: Physical Sciences Reviews, Volume 4, Issue 2, 20170126, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0126.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wiktor Zierkiewicz, Rafał Wysokiński, Mariusz Michalczyk, and Steve Scheiner
Physical Chemistry Chemical Physics, 2019

Comments (0)

Please log in or register to comment.
Log in