Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Safer electrolyte components for rechargeable batteries

Giovanni Battista Appetecchi
  • Corresponding author
  • ENEA, Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability (SSPT), Division Sustainable Materials (PROMAS), Materials and Physicochemical Processes Laboratory (MATPRO),Casaccia Research Center, Via Anguillarese 301, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-16 | DOI: https://doi.org/10.1515/psr-2017-0150


Among the electrochemical energy storage systems, rechargeable lithium batteries are considered very promising candidates for the next generation power sources because of their high gravimetric and volumetric energy density with respect to other cell chemistries. The lithium-ion battery technology is based on the use of electrode materials able to reversibly intercalate lithium cations, which are continuously transferred between two host structures (negative and positive electrodes) during the charge and discharge processes. Commercial lithium-ion batteries commonly use liquid electrolytes based on suitable lithium salts (solute) and organic compounds (solvents). The latter, volatile and flammable, represent serious concerns for the safety of the electrochemical devices, this so far preventing their large diffusion in applications as automotive, storage from renewable sources, smart grids.

One of the most appealing approaches is the partial or total replacement of the organic solvents with safer, less hazardous, electrolyte components. Here, a concise survey of ones of the most investigated types of alternative electrolyte components, proposed for safer and more reliable rechargeable lithium batteries, is reported.

Graphical Abstract:

Keywords: electrolyte components; ionic liquids; lithium salts; polymer hosts; rechargeable batteries


  • [1]

    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.PubMedCrossrefGoogle Scholar

  • [2]

    Pistoia G., editor(s). Lithium batteries, new materials, developments and perspectives, Vol. 5. Amsterdam: Industrial Chemistry Library, Elsevier, 1994Google Scholar

  • [3]

    Scrosati B. Challenge of portable power. Nature. 1995;373:557–8.CrossrefGoogle Scholar

  • [4]

    Lex-Balducci A, Henderson WA, Passerini S. Electrolytes for lithium batteries. In: Yuan J, Liu X, Zhang H, editor(s). Lithium-ion batteries advanced materials and technologies. CRC Press. ISBN 978-1-4398-4128-0, eBook ISBN 978-1-4398-4129-7 2011:147–96.Google Scholar

  • [5]

    Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158:R1–25.CrossrefGoogle Scholar

  • [6]

    Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113:81–100.CrossrefGoogle Scholar

  • [7]

    Yang H, Amiruddin S, Bang HJ, Sun YK, Prakash J. A review of Li-ion cell chemistries and their potential use in hybrid electric vehicles. J Ind Eng Chem. 2006;12:12–38.Google Scholar

  • [8]

    Abraham DP, Roth EP, Kostecky R, McCarthy K, MacLaren S, Doughty DH. Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sources. 2006;161:648–57.CrossrefGoogle Scholar

  • [9]

    Aurbach D, Gofer Y, Ben-Zion M, Aped P. The behaviour of lithium electrodes in propylene and ethylene carbonate: the major factors that influence Li cycling efficiency. J Electroanal Chem. 1992;339:451–71.CrossrefGoogle Scholar

  • [10]

    Aurbach D, Weissman I, Zaban A, Chusid O. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim Acta. 1994;39:51–71.CrossrefGoogle Scholar

  • [11]

    Osaka T, Momma T, Matsumoto Y, Uchida Y. Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J Electrochem Soc. 1997;144:1709–13.CrossrefGoogle Scholar

  • [12]

    Van Schalkwijk WA, Scrosati B. Advanced in lithium-ion batteries. New York: Kluwer Academic/Plenum Publisher, 2002.Google Scholar

  • [13]

    Nazri GA, Pistoia G. Lithium batteries. Boston: Kluwer Academic/Plenum Publisher, 2004.Google Scholar

  • [14]

    Dudlet JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, et al. Conductivity of electrolytes for rechargeable lithium batteries. In: Second International Meeting of Lithium Batteries (IMLB) 1990.Google Scholar

  • [15]

    El Ouatani L, Dedryve`Ire R, Siret C, Biensan P, Gonbeau D. Effect of vinylene carbonate additive in li-ion batteries: comparison of LiCoO2 ∕ C, LiFePO4 ∕ C, and LiCoO4 ∕ Li4Ti5O12 systems. J Electrochem Soc. 2009;156:A468–77.CrossrefGoogle Scholar

  • [16]

    Xiao A, Yang L, Lucht B. Thermal reactions of LiPF6 with added LiBOB. Electrochem Solid State Letters. 2007;10:A241–4.CrossrefGoogle Scholar

  • [17]

    Xu W, Shusterman AJ, Marzke R, Angell CA. LiMOB, an unsymmetrical nonaromatic orthoborate salt for nonaqueous solution electrochemical applications. J Electrochem Soc. 2004;151:A632–8.CrossrefGoogle Scholar

  • [18]

    Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M, Ignat’ev N, et al. Lithium fluorophosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources. 2001;97:557–60.Google Scholar

  • [19]

    Gnanaraj JS, Levi MD, Gofer Y, Aurbach D, Schmidt M. LiPF3(CF2CF3)3: a salt for rechargeable lithium ion batteries. J Electrochem Soc. 2003;150:A445–54.CrossrefGoogle Scholar

  • [20]

    Gnanaraj JS, Zinigrad E, Asraf L, Sprecher M, Gottlieb HE, Geissler W, et al. On the use of LiPF3(CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochem Thermal Studies Electrochem Comm. 2003;5:946–51.Google Scholar

  • [21]

    Barthel J, Buestrich R, Carl E, Gores HJ. new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. III. Synthesis and properties of some lithium organo borates. J Electrochem Soc. 1996;143:3572–5.CrossrefGoogle Scholar

  • [22]

    Barthel J, Schmid A, Gores HJ, New A. Class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. V. synthesis and properties of lithium Bis[2,3-pyridinediolato(2−)-O,O′]borate. J Electrochem Soc. 2000;147:21–4.CrossrefGoogle Scholar

  • [23]

    Xu W, Angell CA. Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid State Letters. 2001;4:E1–4.CrossrefGoogle Scholar

  • [24]

    Handa M, Suzuki M, Suzuki J, Kanematsu H, Sasaki Y. A new lithium salt with a chelate complex of phosphorus for lithium battery electrolytes. J Electrochem Soc. 1999;2:60–2.Google Scholar

  • [25]

    Eberwein M, Schmid A, Schmidt M, Zabel M, Burgemeister T, Barthel J, et al. Synthesis and electrochemical properties of some lithium chelatophosphates. J Electrochem Soc. 2003;150:A994–9.CrossrefGoogle Scholar

  • [26]

    Barbarich TJ, Driscoll PF. A lithium salt of a lewis acid-base complex of imidazolide for lithium-ion batteries. Electrochem Solid State Lett. 2003;6:A113–6.CrossrefGoogle Scholar

  • [27]

    Barbarich TJ, Driscoll PF, Izquierdo S, Zakharov LN, Incarvito CD, Rheingold AL. New family of lithium salts for highly conductive nonaqueous electrolytes. Inorg Chem. 2004;43:7764–73.PubMedCrossrefGoogle Scholar

  • [28]

    Xu K, Zhang S, Jow TR, Xu W, Angell CA. LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochem Solid-State Lett. 2002;5:A26–9.CrossrefGoogle Scholar

  • [29]

    Zhang SS, Xu K, Jow TR. An improved electrolyte for the LiFePO4 working cathodes in a wide temperature range. J.Power Sources. 2006;159:702–7.CrossrefGoogle Scholar

  • [30]

    Amine K, Liu J, Kang S, Belharouak I, Hyung Y, Vissers D, et al. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. J Power Sources. 2004;129:14–9.CrossrefGoogle Scholar

  • [31]

    Xu K. Tailoring electrolyte composition for LiBOB. J Electrochem Soc. 2008;155:A733–8.CrossrefGoogle Scholar

  • [32]

    Xu K, Deveney B, Nechev K, Lam Y, Jow TR. Evaluating LiBOB/lactone electrolytes in large-format lithium-ion cells based on nickelate and iron phosphate. J Electrochem Soc. 2008;155:A959–64.CrossrefGoogle Scholar

  • [33]

    Xu K, Zhang SS, Allen JL, Jow TR. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J Electrochem Soc. 2002;149:A1079–82.CrossrefGoogle Scholar

  • [34]

    Shim EG, Nam TH, Kim JG, Kim HS, Moon SI. Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries. Electrochim Acta. 2009;54:2276–83.CrossrefGoogle Scholar

  • [35]

    Feng JK, Sun XJ, Ai XP, Cao YL, Yang HX. Dimethyl methyl phosphate: a new nonflammable electrolyte solvent for lithium-ion batteries. J Power Sources. 2008;184:570–3.CrossrefGoogle Scholar

  • [36]

    Dalavi S, Xu MQ, Ravdel B, Zhou L, Lucht BL. Nonflammable electrolytes for lithium-ion batteries containing dimethyl methylphosphonate. J Electrochem Soc. 2010;157:A1113–20.CrossrefGoogle Scholar

  • [37]

    Wu L, Song ZP, Liu LS, Guo XF, Kong LB, Zhan H, et al. A new phosphate-based nonflammable electrolyte solvent for Li-ion batteries. J Power Sources. 2009;188:570–3.CrossrefGoogle Scholar

  • [38]

    Zhang SS, Xu K, Jow TR. Tris (2, 2, 2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources. 2003;113:166–72.CrossrefGoogle Scholar

  • [39]

    Tsujikawa T, Yabuta K, Matsushita T, Matsushima T, Hayashi K, Arakawa M. Characteristics of lithium-ion battery with non-flammable electrolyte. J Power Sources. 2009;189:429–34.CrossrefGoogle Scholar

  • [40]

    Arai J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries. J Appl Electrochem. 2002;32:1071–9.CrossrefGoogle Scholar

  • [41]

    Naoi K, Iwama E, Honda Y, Shimodate F. Discharge behavior and rate performance of lithium-ion batteries in nonflammable hydrofluoroethers (II). J Electrochem Soc. 2010;157:A190–5.CrossrefGoogle Scholar

  • [42]

    Arai J. Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries. J Electrochem Soc. 2003;150:A219–28.CrossrefGoogle Scholar

  • [43]

    Tanaka T, Doi T, Okada S, Yamaki JI. Effects of salts in methyl difluoroacetate-based electrolytes on their thermal stability in lithium-ion batteries. Fuel Cells. 2009;9:269–72.CrossrefGoogle Scholar

  • [44]

    Arora P, Zhang Z. Battery separators. Chem Rev. 2004;104:4419–62.PubMedCrossrefGoogle Scholar

  • [45]

    Stephan AM. Review on gel polymer electrolytes for lithium batteries. Eur Polym J. 2006;42:21–42.CrossrefGoogle Scholar

  • [46]

    Wang YJ, Kim D. Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2nanocomposite polymer electrolytes. Electrochim Acta. 2007;52:3181–9.CrossrefGoogle Scholar

  • [47]

    Gentili V, Panero S, Reale P, Scrosati B. Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. J Power Sources. 2007;170:185–90.CrossrefGoogle Scholar

  • [48]

    Raghavan P, Zhao XH, Kim JK, Manuel J, Chauhan GS, Ahn JH, et al. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co hexafluoropropylene) with nano-sized ceramic fillers. Electrochim Acta. 2008;54:228–34.CrossrefGoogle Scholar

  • [49]

    Li ZH, Zhang HP, Zhang P, Wu YP, Zhou XD. Macroporous nanocomposite polymer electrolyte for lithium-ion batteries. J Power Sources. 2008;184:562–5.CrossrefGoogle Scholar

  • [50]

    Kim JK, Cheruvally G, Li X, Ahn JH, Kim KW, Ahn HJ. Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources. 2008;178:815–20.CrossrefGoogle Scholar

  • [51]

    Miao RY, Liu BW, Zhu ZZ, Liu Y, Li JL, Wang XD, et al. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J Power Sources. 2008;184:420–6.CrossrefGoogle Scholar

  • [52]

    Ren Z, Sun KN, Liu YY, Zhou XL, Zhang NQ, Zhu XD. Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) with crosslinked poly(ethylene glycol) for lithium batteries. Solid State Ionics. 2009;180:693–7.CrossrefGoogle Scholar

  • [53]

    Ding YH, Di W, Jiang Y, Xu F, Long ZL, Ren FM, et al. The morphological evolution, mechanical properties and ionic conductivities of electrospinning P(VdF-HFP) membranes at various temperatures. Ionics (Kiel). 2009;15:731–4.CrossrefGoogle Scholar

  • [54]

    Cui ZY, Xu YY, Zhu LP, Wang JY, Zhu BK. Investigation on PVDF-HFP microporous membranes prepared by TIPS process and their application as polymer electrolytes for lithium ion batteries. Ionics (Kiel). 2009;15:469–76.CrossrefGoogle Scholar

  • [55]

    Jiang Z, Carroll B, Abraham KM. Studies of some poly(vinylidene fluoride) electrolytes. Electrochim Acta. 1997;42:2667–77.CrossrefGoogle Scholar

  • [56]

    Li J. Exchange coupling in P(VdF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys Rev Lett. 2003;90:217601.CrossrefGoogle Scholar

  • [57]

    Appetecchi GB, Croce F, De Paolis A, Scrosati B. A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries. J Electroanal Chem. 1999;463:248–52.CrossrefGoogle Scholar

  • [58]

    Djian D, Alloin F, Martinet S, Lignier H. Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity. J Power Sources. 2009;187:575–80.CrossrefGoogle Scholar

  • [59]

    Costa CM, Rodrigues LC, Sencadas V, Silva MM, Rocha JG, Lanceros-Mendez S. Effect of degree of porosity on the properties of poly(vinylidene fluoride–trifluorethylene) for Li-ion battery separators. J Membr Sci. 2012;407:193–201.Google Scholar

  • [60]

    Saunier J, Alloin F, Sanchez JY, Barrie`Re B. Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. I. Swelling behavior of dense membranes with respect to a liquid electrolyte-Characterization of the swelling equilibrium. J Polym Sci Part B: Polym Phys. 2004;42:532–43.CrossrefGoogle Scholar

  • [61]

    Saunier J, Alloin F, Sanchez JY, Maniguet L. Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. III. Gel properties and irreversible modifications of poly(vinylidene fluoride) membranes under swelling in liquid electrolytes. J Polym Sci Part B: Polym Phys. 2004;42:2308–17.CrossrefGoogle Scholar

  • [62]

    Nakajima T, Groult H. Fluorinated materials for energy conversion. Amsterdam: Elsevier Science, 2005.Google Scholar

  • [63]

    Costa CM, Silva MM, Lanceros-Mendez S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv. 2013;3:11404–17.CrossrefGoogle Scholar

  • [64]

    Costa CM, Sencadas V, Rocha JG, Silva MM, Lanceros-Mendez S. Evaluation of the main processing parameters influencing the performance of poly(vinylidene fluoride-trifluoroethylene) lithium-ion battery separators. J Solid State Electrochem. 2013;17:861–70.CrossrefGoogle Scholar

  • [65]

    Costa CM, Rodrigues LC, Sencadas V, Silva MM, Lanceros-Mendez S. Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/​lithium perchlorate trihydrate composite membranes for battery applications. Solid State Ionics. 2012;217:19–26.CrossrefGoogle Scholar

  • [66]

    Costa CM, Nunes-Pereira J, Rodrigues LC, Silva MM, Ribelles JLG, Lanceros-Mendez S. Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. Electrochim Acta. 2013;88:473–6.CrossrefGoogle Scholar

  • [67]

    Costa CM, Gomez Ribelles JL, Lanceros-Mendez S, Appetecchi GB, Scrosati B. Novel poly(vinylidenefluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J Power Sources. 2014;245:779–86.CrossrefGoogle Scholar

  • [68]

    Ren Z, Liu YY, Sun KN, Zhou XL, Zhang NQ. A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim Acta. 2009;54:1888–92.CrossrefGoogle Scholar

  • [69]

    Raghavan P, Zhao X, Shin C, Baek DH, Choi JW, Manuel J, et al. Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries. J Power Sources. 2010;195:6088–94.CrossrefGoogle Scholar

  • [70]

    Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, et al. Development of electrospun PVdF-PAN membrane based polymer electrolytes for lithium batteries. J Membr Sci. 2008;325:683–90.CrossrefGoogle Scholar

  • [71]

    Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources. 2010;195:4554–69.CrossrefGoogle Scholar

  • [72]

    Choi BK, Shin KH, Kim YW. Lithium ion conduction in PEO–salt electrolytes gelled with PAN. Solid State Ionics. 1998;113:123–7.Google Scholar

  • [73]

    Kang Y, Kim HJ, Kim E, Oh B, Cho JH. Photocured PEO-based solid polymer electrolyte and its application to lithium–polymer batteries. J Power Sources. 2001;92:255–9.CrossrefGoogle Scholar

  • [74]

    Aihara Y, Appetecchi GB, Scrosati B. A new concept for the formation of homogeneous gel-type polymer electrolytes. J Electrochem Soc. 2002;149:A849–54.CrossrefGoogle Scholar

  • [75]

    Aihara Y, Appetecchi GB, Scrosati B, Hayamizu K. Investigation on the ionic conduction mechanism of composite poly(ethyleneoxide) PEO-based polymer gel electrolytes including nano-size SiO2. J Phys Chem C. 2002;4:3443–7.Google Scholar

  • [76]

    Appetecchi GB, Aihara Y, Scrosati B. Investigation of swelling phenomena in Poly(Ethyleneoxide)-based polymer electrolytes. III. Preliminary battery tests. J Electrochem Soc. 2003;150:A301–5.CrossrefGoogle Scholar

  • [77]

    Appetecchi GB, Aihara Y, Scrosati B. Investigation of swelling phenomena in PEO-based polymer electrolytes. II. Chemical and electrochemical characterization. Solid State Ionics. 2004;170:63–72.CrossrefGoogle Scholar

  • [78]

    Croce F, Gerace F, Dautzenberg G, Passerini S, Appetecchi GB, Scrosati B. Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta. 1994;39:2187–94.CrossrefGoogle Scholar

  • [79]

    Appetecchi GB, Croce F, Romagnoli P, Scrosati B, Heider U, Oesten R. High-performance gel-type lithium electrolyte membranes. Electrochem Commun. 1999;1:83–6.CrossrefGoogle Scholar

  • [80]

    Appetecchi GB, Romagnoli P, Scrosati B. Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochem Commun. 2001;3:281–4.CrossrefGoogle Scholar

  • [81]

    Appetecchi GB, Croce F, Scrosati B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta. 1995;40:991–7.CrossrefGoogle Scholar

  • [82]

    Cazzanelli E, Mariotto G, Croce F, Appetecchi GB, Scrosati B. Study of ion-molecule interaction in poly(methylmethacrylate)-based gel electrolytes by raman spectroscopy. Electrochim Acta. 1995;40:2379–82.CrossrefGoogle Scholar

  • [83]

    Cazzanelli E, Mariotto G, Appetecchi GB, Croce F. Raman study of ion-molecules interaction in poly(methylmethacrylate)-based gel electrolytes. Ionics (Kiel). 1996;2:81–7.CrossrefGoogle Scholar

  • [84]

    Appetecchi GB, Croce F, Scrosati B. High performance electrolyte membranes for plastic lithium batteries. J Power Sources. 1997;66:77–82.CrossrefGoogle Scholar

  • [85]

    Wieczorek W, Stevens J. Impedance spectroscopy and phase structure of polyether−poly(methyl methacrylate)−LiCF3SO3 blend-based electrolytes. J Phys Chem B. 1997;101:1529–34.CrossrefGoogle Scholar

  • [86]

    Willemse RC, Posthuma De Boer A, Van Dam J, Gotsis AD. Co-continuous morphologies in polymer blends: a new model. Polymer (Guildf). 1998;39:5879–87.CrossrefGoogle Scholar

  • [87]

    Willemse RC, Posthuma De Boer A, Van Dam J, Gotsis AD. Co-continuous morphologies in polymer blends: the influence of the interfacial tension. Polymer (Guildf). 1999;40:827–34.CrossrefGoogle Scholar

  • [88]

    Jordhamo GM, Manson JA, Sperling LH. Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Polym Eng Sci. 1986;26:517–24.CrossrefGoogle Scholar

  • [89]

    Passerini S, Alessandrini F, Momma T, Ohta H, Ito H, Osaka T. Co-continuous polymer blend based lithium-ion conducting gel-polymer electrolytes. Electrochem Solid-State Lett. 2001;4:A124–6.CrossrefGoogle Scholar

  • [90]

    Momma T, Ito H, Nara H, Mukaibo H, Passerini S, Osaka T. Characteristics of interpenetrated polymer network system made of polyethylene oxide-LiBF4 complex and polystyrene as the electrolyte for lithium secondary batteries. Electrochem. 2003;71:1182–6.Google Scholar

  • [91]

    Nara H, Momma T, Osaka T. Feasibility of an interpenetrated polymer network system made of di-block copolymer composed of polyethylene oxide and polystyrene as the gel electrolyte for lithium secondary batteries. Electrochem. 2008;76:276–81.CrossrefGoogle Scholar

  • [92]

    Appetecchi GB, Alessandrini F, Passerini S, Caporiccio G, Boutevin B, Guida-Pietra Santa F. Novel polymeric systems for lithium-ion batteries gel electrolytes. I. cross-linked polyFluoroSilicone. Electrochim Acta. 2004;50:149–50.Google Scholar

  • [93]

    Appetecchi GB, Alessandrini F, Passerini S, Caporiccio G, Boutevin B, Guida-Pietra Santa F. Novel polymeric systems for lithium ion batteries gel electrolytes. II. hybrid cross-linked poly(fluorosilicone-ethyleneoxide). Electrochim Acta. 2005;50:4396–404.CrossrefGoogle Scholar

  • [94]

    Rogers JRD, Seddon KR Ionic liquids: industrial application to green chemistry ACS Symposium Series, 818 American Chemical Society. Washington, 2002.Google Scholar

  • [95]

    Xu W, Cooper E, Angell AA. Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B. 2003;107:6170–8.CrossrefGoogle Scholar

  • [96]

    Zhou ZB, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J. 2005;11:752–66.CrossrefGoogle Scholar

  • [97]

    Ohno H, editor. Electrochemical aspects of ionic liquids. Hoboken, NJ: John Wiley & Sons Inc, 2005.Google Scholar

  • [98]

    Appetecchi GB, Montanino M, Passerini S. Ionic liquid-based electrolytes for high-energy lithium batteries. In Ionic liquids: science and applications. ACS Symposium Series 1117. In: Visser AE, Bridges NJ, Rogers RD, editors, American Chemical Society. Washington, DC, USA: Oxford University Press, Inc., 2013: 67–128.Google Scholar

  • [99]

    Nakagawa H, Izuchi S, Kunawa K, Nukuda T, Aihara Y. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J Electrochem Soc. 2003;150:A695–700.CrossrefGoogle Scholar

  • [100]

    Bhatt AI, Maycbe I, Volkovich VA, Hetherington ME, Lewin B, Thied RC, et al. Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes. J Chem Soc Dalton Trans. 2002;4532–4.Google Scholar

  • [101]

    Panozzo S, Armand M, Stephan O. Light-emitting electrochemical cells using a molten delocalized salt. Appl Phys Lett. 2002;80:679–81.CrossrefGoogle Scholar

  • [102]

    Wang P, Zakeeruddin SM, Exnar I, Gratzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun. 2002;2972–3.Google Scholar

  • [103]

    Fuller J, Breda AC, Carlin RT. Ionic liquid–polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem. 1998;459:29–34.CrossrefGoogle Scholar

  • [104]

    Noda A, Susan MABH, Kudo K, Mitsushima S, Hayamizu K, Watanabe M. Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B. 2003;107:4024–33.CrossrefGoogle Scholar

  • [105]

    Balducci A, Henderson WA, Mastragostino M, Passerini S, Simon P, Soavi F. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim Acta. 2005;50:2233–7.CrossrefGoogle Scholar

  • [106]

    Appetecchi GB, Montanino M, Carewska M, Moreno M, Alessandrini F, Passerini S. Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide anion-based ionic liquids. Electrochim Acta. 2011;56:1300–7.CrossrefGoogle Scholar

  • [107]

    Appetecchi GB, Montanino M, Carewska M, Alessandrini F, Passerini S. LiFSI-PYR1AFSI binary electrolyte mixture for lithium batteries. ECS Trans. 2010;25:49–60.Google Scholar

  • [108]

    Appetecchi GB, D’Annibale A, Santilli C, Genova E, Lombardo L, Navarra MA, et al. Novel functionalized ionic liquid with a sulfur atom in the aliphatic side chain of the pyrrolidinium cation. Electrochem Comm. 2016;63:26–9.CrossrefGoogle Scholar

  • [109]

    Dearden JC. The QSAR prediction of melting point, a property of environmental relevance. Sci Total Environ. 1991;109:59–68.PubMedGoogle Scholar

  • [110]

    Zhou ZB, Matsumoto H, Tatsumi K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J. 2006;12:2196–212.CrossrefGoogle Scholar

  • [111]

    Koch VR, Nanjundiah C, Appetecchi GB, Scrosati B. The interfacial stability of Li with two new solvent-free ionic liquids;1,2 dimethyl-3-propylimidazolium imide and methide. J Electrochem Soc. 1995;142:L116–8.CrossrefGoogle Scholar

  • [112]

    Carlin RT, Fuller J U.S. Patent 5,552,238 issued on September 3, 1996.Google Scholar

  • [113]

    Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35:1168–78.PubMedCrossrefGoogle Scholar

  • [114]

    Sun J, Forsyth M, MacFarlane DR Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B. 1998;102:8858–64.CrossrefGoogle Scholar

  • [115]

    MacFarlane DR, Huang J, Forsyth M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature. 1999;402:792–4.CrossrefGoogle Scholar

  • [116]

    MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M. Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J Phys Chem B. 1999;103:4164–70.CrossrefGoogle Scholar

  • [117]

    Howlett PC, MacFarlane DR, Hollenkamp AF. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid-State Lett. 2004;7:A97–101.CrossrefGoogle Scholar

  • [118]

    Shin JH, Henderson WA, Passerini S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun. 2003;5:1016–20.CrossrefGoogle Scholar

  • [119]

    Shin JH, Henderson WA, Passerini S. An elegant fix for polymer electrolytes. Electrochem Solid-State Lett. 2005;8:A125–7.CrossrefGoogle Scholar

  • [120]

    Shin JH, Henderson WA, Passerini S. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc. 2005;152:A978–83.CrossrefGoogle Scholar

  • [121]

    Henderson WA, Passerini S. Phase behavior of ionic liquid−LiX mixtures: pyrrolidinium cations and TFSI-anions. Chem Mater. 2004;16:2881–5.CrossrefGoogle Scholar

  • [122]

    Matsumoto H, Sakaebe H, Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J Power Sources. 2005;146:45–50.CrossrefGoogle Scholar

  • [123]

    Zhou Q, Henderson WA, Appetecchi GB, Montanino M, Passerini S. Physical and electrochemical properties of N-Alkyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquids: PY13FSI and PY14FSI. J Phys Chem B. 2008;112:13577–80.PubMedCrossrefGoogle Scholar

  • [124]

    Paillard E, Zhou Q, Henderson WA, Appetecchi GB, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. J Electrochem Soc. 2009;156:A891–5.CrossrefGoogle Scholar

  • [125]

    Serra Moreno J, Deguchi Y, Panero S, Scrosati B, Ohno H, Simonetti E, et al. High performance ionic liquid electrolytes for lithium battery systems. Electrochim Acta. 2016;191:624–30.CrossrefGoogle Scholar

  • [126]

    Kim GT, Appetecchi GB, Montanino M, Alessandrini F, Passerini S. Long-term cyclability of lithium metal electrodes in ionic liquid-based electrolyte at room temperature. ECS Trans. 2010;25:127–38.Google Scholar

  • [127]

    Madherna M, Reiter J, Moskon J, Dominko R. Lithium bis(fluorosulfonyl)imide–PYR14TFSI ionic liquid electrolyte compatible with graphite. J Power Sources. 2011;196:7700–6.CrossrefGoogle Scholar

  • [128]

    An Y, Zuo P, Cheng X, Liao L, Yin G. Preparation and properties of ionic-liquid mixed solutions as a safety electrolyte for lithium ion batteries. Int J Electrochem Sci. 2011;6:2398–410.Google Scholar

  • [129]

    Conte L, Gambaretto G, Caporiccio G, Alessandrini F, Passerini S. Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of intermediates and target compounds. J Fluorine Chem. 2004;125:243–52.CrossrefGoogle Scholar

  • [130]

    Toulgoat F, Langlois BR, Medebielle M, Sanchez JY. An efficient preparation of new sulfonyl fluorides and lithium sulfonates. J Org Chem. 2007;72:9046–52.CrossrefPubMedGoogle Scholar

  • [131]

    Triolo A, Russina O, Fazio B, Appetecchi GB, Carewska M, Passerini S. Nanoscale organization in piperidinium-based room temperature ionic liquids. J. Chem Phys. 2009;130:164521–6.CrossrefPubMedGoogle Scholar

  • [132]

    Russina O, Lo Celso F, Di Michiel M, Passerini S, Appetecchi GB, Castiglione F, et al. Evidences of fluorinated nano-domains in room temperature ionic liquids with perfluoroalkylsulfonylimide anions. Faraday Discussion. 2013;167:499–513.Google Scholar

  • [133]

    Cooper EI, Angell CA. Versatile organic iodide melts and glasses with high mole fractions of LiI: glass transition temperatures and electrical conductivities. Solid State Ionics. 1983;9:617–22.Google Scholar

  • [134]

    Cooper EI, Angell CA. Ambient temperature plastic crystal fast ion conductors (PLICFICS). Solid State Ionics. 1986;18:570–6.Google Scholar

  • [135]

    Liu C, Angell CA. Phase equilibria, high conductivity ambient temperature liquids, and glasses in the pseudo-halide systems A1C13-MSCN (M = Li, Na, K). Solid State Ionics. 1996;86:467–73.Google Scholar

  • [136]

    Xu W, Wang LM, Nieman RA, Angell CA. Ionic liquids of chelated orthoborates as model ionic glassformers. J Phys Chem B. 2003;107:11749–56.CrossrefGoogle Scholar

  • [137]

    Nicotera I, Oliviero C, Henderson WA, Appetecchi GB, Passerini S. NMR investigation of ionic liquid-LiX mixtures; Pyrrolidinium cations and TFSI anions. J Phys Chem B. 2005;109:22814–9.CrossrefPubMedGoogle Scholar

  • [138]

    Borodin O, Smith GD. Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid from molecular dynamics simulations. J Phys Chem B. 2006;110:11481–90.PubMedCrossrefGoogle Scholar

  • [139]

    Borodin O, Smith GD, Henderson WA. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids. J Phys Chem B. 2006;110:16879–86.CrossrefPubMedGoogle Scholar

  • [140]

    Kunze M, Paillard E, Jeong SS, Appetecchi GB, Schonhoff M, Winter M, et al. Inhibition of self-aggregation in ionic liquid electrolytes for high-energy electrochemical devices. J Phys Chem C. 2011;115:19431–6.CrossrefGoogle Scholar

  • [141]

    Castiglione F, Ragg E, Mele A, Appetecchi GB, Montanino M, Passerini S. Molecular environment and enhanced diffusivity of Li+ n lithium-salt-doped ionic liquid electrolytes. J Phys Chem Lett. 2011;2:153–7.CrossrefGoogle Scholar

  • [142]

    Montanino M, Carewska M, Alessandrini F, Passerini S, Appetecchi GB. The role of the aliphatic side chain on N-alkyl-N-alkylpiperidinium bis(trifluoromethansulfonyl)imide ionic liquids. Electrochim Acta. 2011;57:153–9.CrossrefGoogle Scholar

  • [143]

    Appetecchi GB, Montanino M, Carewska M, Alessandrini F, Passerini S. Ionic liquid binary mixtures for low temperature applications. Adv Sci Techol. 2010;72:315–9.CrossrefGoogle Scholar

  • [144]

    Castiglione F, Raos G, Appetecchi GB, Montanino M, Passerini S, Moreno M, et al. Blending ionic liquids: how physico-chemical properties changes. J Phys Chem Chem Phys. 2010;12:1784–92.CrossrefGoogle Scholar

  • [145]

    Montanino M, Moreno M, Alessandrini F, Appetecchi GB, Passerini S, Zhou Q, et al. Physical and electrochemical properties of binary ionic liquid mixtures: (1-x)PYR14TFSI-(x)PYR14IM14. Electrochim Acta. 2012;60:163–9.CrossrefGoogle Scholar

  • [146]

    Kunze M, Jeong SS, Appetecchi GB, Schonhoff M, Winter M, Passerini S. Mixtures of ionic liquids for low temperature electrolytes. Electrochim Acta. 2012;82:69–74.CrossrefGoogle Scholar

  • [147]

    Appetecchi GB, Montanino M, Balducci A, Lux SF, Winter M, Passerini S. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. electrochemical characterization of the electrolytes. J Power Sources. 2009;192:599–605.CrossrefGoogle Scholar

  • [148]

    Lux SF, Schmuck M, Appetecchi GB, Passerini S, Winter M, Balducci A. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolyte. II. evaluation of specific capacity and cycling efficiency and stability at room temperature. J Power Sources. 2009;192:606–11.CrossrefGoogle Scholar

  • [149]

    Lux S, Schumuck M, Rupp B, Kern W, Appetecchi GB, Passerini S, et al. Mixtures of ionic liquid in combination with graphite electrodes: the role of electrolyte additive and Li-salt. ECS Trans. 2009;16:45–9.Google Scholar

  • [150]

    Moreno M, Simonetti E, Appetecchi GB, Carewska M, Montanino M, Kim G-T, et al. Ionic liquid electrolytes for safer lithium batteries: I. Investigation around optimal formulation. J Electrochem Soc. 2017;164:A6026–31.CrossrefGoogle Scholar

  • [151]

    Serra Moreno J, Jeremias S, Moretti A, Panero S, Passerini S, Scrosati B, et al. Ionic liquids mixture with tunable physicochemical properties. Electrochim Acta. 2015;151:599–608.CrossrefGoogle Scholar

  • [152]

    Montanino M, Moreno M, Carewska M, Maresca G, Simonetti E, Lo Presti R, et al. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. J Power Sources. 2014;269:608–15.CrossrefGoogle Scholar

  • [153]

    Guerfi A, Dontigny M, Kobayashi Y, Vijh A, Zaghib K. Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J Solid State Electrochem. 2009;13:1003–14.CrossrefGoogle Scholar

  • [154]

    Kuhnel RS, Bockenfeld N, Passerini S, Winter M, Balducci A. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim Acta. 2011;56:4092–9.CrossrefGoogle Scholar

  • [155]

    Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymers (Basel). 1973;14:589.Google Scholar

  • [156]

    Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym. 1975;7:319–27.CrossrefGoogle Scholar

  • [157]

    Armand M, Chabagno JM, Duclot M. Second international meeting on solid electrolytes. Scotland: St Andrews, Sept 1978: 20–2Google Scholar

  • [158]

    Armand M, Chabagno M, Duclot M. Polyethers as solid electrolytes. In: Vashitshta P, Mundy JN, Shenoy GK, editors, Fast ion transport in solids. Electrodes and electrolytes. Amsterdam: North Holland Publishers, 1979.Google Scholar

  • [159]

    Gray FM. Polymer electrolytes. Cambridge: Royal Society of Chemistry Monographs, 1997.Google Scholar

  • [160]

    Wright PV. Developments in polymer electrolytes for lithium batteries. MRS Bullettin. 2002;597–602.Google Scholar

  • [161]

    Borghini MC, Mastragostino M, Passerini S, Scrosati B. Electrochemical properties of poly(ethylene oxide)-Li[(CF3SO3)N]-gamma-LiAlO2 composite polymer electrolytes. J Electrochem Soc. 1995;142:2118–21.CrossrefGoogle Scholar

  • [162]

    Appetecchi GB, Henderson WA, Villano P, Berrettoni M, Passerini S. PEO-LiN(SO2CF2CF3)2 polymer electrolytes. I. XRD, DSC and ionic conductivity characterization. J Electrochem Soc. 2001;148:1171–8.CrossrefGoogle Scholar

  • [163]

    Lightfoot P, Metha MA, Bruce PG. Crystal structure of the polymer electrolyte poly(ethylene oxide)3:liCF3SO3. Science. 1993;262:883–5.CrossrefPubMedGoogle Scholar

  • [164]

    Vincent CA, Scrosati B. Modern batteries. An introduction to electrochemical power sources. 2nd ed. London: Arnold, 1993.Google Scholar

  • [165]

    Gray FM, Armand M. Energy storage system for electronics. Osaka T, Datta M, editors. Amsterdam: Gordon and Breach Science Publications, 2000.Google Scholar

  • [166]

    Berthier C, Gorecki W, Minier M, Armand M, Chabagno JM, Rigaud P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics. 1983;11:91–5.CrossrefGoogle Scholar

  • [167]

    Minier M, Berthier C, Gorecki W. Thermal analysis and NMR study of a poly(ethylene oxide) complex electrolyte: PEO(LiCF3SO3)x. J Physique. 1984;45:739–44.CrossrefGoogle Scholar

  • [168]

    Marzantowicz M, Dygas JR, Krok F, Tomaszewska A, Florjanczyk Z, Zygadlo-Monikowska E, et al. Star-branched poly(ethylene oxide) LiN(CF3SO2)2: A promising polymer electrolyte. J Power Sources. 2009;194:51–7.CrossrefGoogle Scholar

  • [169]

    Wieczorek W. Composite polyether-based electrolytes. Warsaw: Ofycina Wydawnicza Politechniki Warszawskeiej, 1995.Google Scholar

  • [170]

    Aihara Y, Arai S, Hayamizu K. Ionic conductivity, DSC and self-diffusion coefficients of lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of the gels and the diffusion mechanism of the ions. Electrochim Acta. 2000;45:1321–6.CrossrefGoogle Scholar

  • [171]

    Chakrabarti A, Juilfs A, Filler R, Mandal BK. Novel PEO-based dendronized polymers for lithium-ion batteries. Solid State Ionics. 2010;181:982–6.CrossrefGoogle Scholar

  • [172]

    Rocco AM, Carias AD, Pereira RP. Polymer electrolytes based on a ternary miscible blend of poly(ethylene oxide), poly(bisphenol A-co-epichlorohydrin) and poly(vinyl ethyl ether). Polymer (Guildf). 2010;51:5151–64.CrossrefGoogle Scholar

  • [173]

    Appetecchi GB, Zane D, Scrosati B. PEO-based electrolyte membranes based on LiBC4O8 salt. J Electrochem Soc. 2004;151:A1369–74.CrossrefGoogle Scholar

  • [174]

    Kurian M, Galvin ME, Trapa PE, Sadoway DR, Mayes AM. Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications. Electrochim Acta. 2005;50:2125–34.CrossrefGoogle Scholar

  • [175]

    Appetecchi GB, Dautzenberg G, Scrosati B. A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries. J Electrochem Soc. 1996;143:6–12.CrossrefGoogle Scholar

  • [176]

    Appetecchi GB, Dautzenberg G, Scrosati B Highly conductive gel electrolyte membranes. Proceedings of International Workshop on Advanced Batteries. 1995: 72–81.Google Scholar

  • [177]

    Snyder JF, Carter RH, Wetzel ED. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem Mater. 2007;19:3793–801.Google Scholar

  • [178]

    Capuano F, Croce F, Scrosati B. Composite polymer electrolytes. J Electrochem Soc. 1991;52:1918–22.Google Scholar

  • [179]

    Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394:456–8.CrossrefGoogle Scholar

  • [180]

    Lin CW, Hung CL, Venkateswarlu M, Hwang BJ. Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources. 2005;146:397–401.CrossrefGoogle Scholar

  • [181]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, et al. Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–li(CF3SO2)2N/Li. J Power Sources. 2010;195:6847–53.CrossrefGoogle Scholar

  • [182]

    Shen C, Wang JM, Tang Z, Wang HJ, Lian HQ, Zhang JQ, et al. Physicochemical properties of poly(ethylene oxide)-based composite polymer electrolytes with a silane-modified mesoporous silica SBA-15. Electrochim Acta. 2009;54:3490–4.CrossrefGoogle Scholar

  • [183]

    Chen-Yang YW, Wang YL, Chen YT, Li YK, Chen HC, Chiu HY. Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery. J Power Sources. 2008;182:340–8.CrossrefGoogle Scholar

  • [184]

    Capiglia C, Mustarelli P, Quartarone E, Tomasi C. Magistris. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics. 1999;118:73–9.CrossrefGoogle Scholar

  • [185]

    Walls HJ, Zhou J, Yerian JA, Fedkiw PS, Khan SS, Stowe MK, et al. Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J Power Sources. 2000;89:156–62.CrossrefGoogle Scholar

  • [186]

    Liu Y, Lee JY, Hong L. Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. J Power Sources. 2002;109:507–14.CrossrefGoogle Scholar

  • [187]

    Koster TKJ, Van Wullen L. Cation–anion coordination, ion mobility and the effect of Al2O3 addition in PEO based polymer electrolytes. Solid State Ionics. 2010;181:489–95.CrossrefGoogle Scholar

  • [188]

    Pitawala HMJC, Dissanayake MAKL, Seneviratne VA, Mellander BE, Albinson I. Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf: al2O3 nanocomposite polymer electrolyte system. J Solid State Electrochem. 2008;12:783–9.CrossrefGoogle Scholar

  • [189]

    Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander B-E. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim Acta. 2002;47:3257–68.CrossrefGoogle Scholar

  • [190]

    Croce F, Sacchetti S, Scrosati B. Advanced, high-performance composite polymer electrolytes for lithium batteries. J Power Sources. 2006;161:560–4.CrossrefGoogle Scholar

  • [191]

    Croce F, Sacchetti S, Scrosati B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources. 2006;162:685–9.CrossrefGoogle Scholar

  • [192]

    Derrien G, Hassoun J, Sacchetti S, Panero S. Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. Solid State Ionics. 2009;180:1267–71.CrossrefGoogle Scholar

  • [193]

    Johan MR, Fen LB. Combined effect of CuO nanofillers and DBP plasticizer on ionic conductivity enhancement in the solid polymer electrolyte PEO–liCF3SO3. Ionics (Kiel). 2010;16:335–8.CrossrefGoogle Scholar

  • [194]

    Wang LS, Yang WS, Wang J, Evans DG. New nanocomposite polymer electrolyte comprising nanosized ZnAl2O4 with a mesopore network and PEO-LiClO4. Solid State Ionics. 2009;180:392–7.CrossrefGoogle Scholar

  • [195]

    Appetecchi GB, Croce F, Hassoun J, Scrosati B, Salomon M, Cassel F. Hot-pressed, dry, composite, PEO-based electrolyte membranes. I. Ionic conductivity characterization. J Power Sources. 2003;114:105–12.CrossrefGoogle Scholar

  • [196]

    Appetecchi GB, Alessandrini F, Carewska M, Caruso T, Prosini PP, Scaccia S, et al. Investigation on the lithium polymer electrolyte batteries. J Power Sources. 2001;97:790–4.Google Scholar

  • [197]

    Appetecchi GB, Scaccia S, Passerini S. Investigation on the stability of the lithium-polymer electrolyte interface J. Electrochem Soc. 2000;147:4448–52.CrossrefGoogle Scholar

  • [198]

    Shin JH. Passerini S. PEO-LiN (SO2CF2CF3)2 polymer electrolytes. V. effect of fillers on ionic transport properties. J Electrochem Soc. 2004;151:A238–45.Google Scholar

  • [199]

    Shin JH, Henderson WA, Appetecchi GB, Alessandrini F, Passerini S. Recent developments in the ENEA lithium metal battery project. Electrochim Acta. 2005;50:3859–65.CrossrefGoogle Scholar

  • [200]

    Shin JH, Henderson WA, Scaccia S, Prosini PP, Passerini S. Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C. J Power Sources. 2006;156:560–6.CrossrefGoogle Scholar

  • [201]

    Shin JH, Henderson WA, Tizzani C, Passerini S, Jeong SS, Kim KW. Characterization of solvent-free polymer electrolytes consisting of ternary PEO – liTFSI – PYR14 TFSI. J Electrochem Soc. 2006;153:A1649–54.CrossrefGoogle Scholar

  • [202]

    Kim GT, Appetecchi GB, Alessandrini F, Passerini S. Solvent-free, PYR1ATFSI ionic liquids-based ternary polymer electrolyte systems. I. Electrochemical characterization. J Power Sources. 2007;171:861–9.CrossrefGoogle Scholar

  • [203]

    Kim GT, Appetecchi GB, Carewska M, Joost M, Balducci A, Winter M, et al. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic-liquids. J Power Sources. 2010;195:6130–7.CrossrefGoogle Scholar

  • [204]

    Wang YP, Gao XH, Chen JC, Li ZW, Li CL, Zhang SC. Imidazolium-organic solvent–alkali metal salt mixtures as nonflammable electrolytes incorporated into PVDF–PEG polymer electrolyte. J Appl Polym Sci. 2009;113:2492–8.CrossrefGoogle Scholar

  • [205]

    Sirisopanaporn C, Fernicola A, Scrosati B. New, ionic liquid-based membranes for lithium battery application. J Power Sources. 2009;186:490–5.CrossrefGoogle Scholar

  • [206]

    Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries - An overview of electrochemical studies. J Power Sources. 2009;194:601–9.CrossrefGoogle Scholar

  • [207]

    Kim S, Park SJ. Preparation and electrochemical properties of composite polymer electrolytes containing 1-ethyl-3-methylimidazolium tetrafluoroborate salts. Electrochim Acta. 2009;54:3775–80.CrossrefGoogle Scholar

  • [208]

    Shin JH, Cairns EJ. N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI–poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J Power Sources. 2008;177:537–45.CrossrefGoogle Scholar

  • [209]

    Tigelaar DM, Meador MAB, Bennett WR. Composite electrolytes for lithium batteries: ionic liquids in APTES cross-linked polymers. Macromol. 2007;40:4159–64.CrossrefGoogle Scholar

  • [210]

    Sutto TE. Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J Electrochem Soc. 2007;154:P101–7.CrossrefGoogle Scholar

  • [211]

    Cheng H, Zhu CB, Huang B, Lu M, Yang Y. Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta. 2007;52:5789–94.CrossrefGoogle Scholar

  • [212]

    Zhao Y, Tao RY, Fujinami T. Enhancement of ionic conductivity of PEO-LiTFSI electrolyte upon incorporation of plasticizing lithium borate. Electrochim Acta. 2006;51:6451–5.CrossrefGoogle Scholar

  • [213]

    Kawano R, Tokuda H, Katakabe T, Nakamoto H, Kokubo H, Imabayashi S, et al. Specific charge transport in ionic liquids and ion gels and the importance in material science. Kobunshi Ronbunshu. 2006;63:31–40.CrossrefGoogle Scholar

  • [214]

    Borodin O, Smith GD, Geiculescu O, Creager SE, Hallac B, DesMarteau D. Li+ transport in lithium sulfonylimide−oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. J Phys Chem B. 2006;110:24266–74.PubMedCrossrefGoogle Scholar

  • [215]

    Seki S, Susan ABH, Kaneko T, Tokuda H, Noda A, Watanabe M. Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. J Phys Chem B. 2005;109:3886–92.PubMedCrossrefGoogle Scholar

  • [216]

    Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, et al. UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources. 2010;195:1706–13.CrossrefGoogle Scholar

  • [217]

    Gayet F, Viau L, Leroux F, Monge S, Robin JJ, Vioux A. Polymer nanocomposite ionogels, high-performance electrolyte membranes. J Mater Chem. 2010;20:9456–62.CrossrefGoogle Scholar

  • [218]

    Abitelli E, Ferrari S, Quartarone E, Mustarelli P, Magistris A, Fagnoni M, et al. Polyethylene oxide electrolyte membranes with pyrrolidinium-based ionic liquids. Electrochim Acta. 2010;55:5478–84.CrossrefGoogle Scholar

  • [219]

    Castriota M, Caruso T, Agostino RG, Cazzanelli E, Henderson WA, Passerini S. Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its Mixture with LiN(SO2CF3)2. J Phys Chem. 2005;109:92–6.CrossrefGoogle Scholar

  • [220]

    Passerini S, Montanino M, Appetecchi GB. Lithium polymer batteries based on ionic liquids. In: Mittal V, editor, Polymers for energy storage and conversion. USA: John Wiley and Scriverner Publishing, 2013: 53–101.Google Scholar

  • [221]

    Simonetti E, Carewska M, Maresca G, De Francesco M, Appetecchi GB. Highly conductive, ionic liquid-based polymer electrolytes. J Electroch Soc. 2017;164:A6213–9.CrossrefGoogle Scholar

  • [222]

    Simonetti E, Carewska M, Di Carli M, Moreno M, De Francesco M, Appetecchi GB. Towards improvement of the electrochemical properties of ionic liquid-containing polymer electrolytes. Electrochim Acta. 2017;235:323–31.CrossrefGoogle Scholar

  • [223]

    Prosini PP, Passerini S, Vellone R, Smyrl WH. V2O5 xerogel lithium-polymer electrolyte batteries. J Power Sources. 1998;75:73–83.CrossrefGoogle Scholar

  • [224]

    Rymarczyk J, Carewska M, Appetecchi GB, Zane D, Alessandrini F, Passerini S. A novel ternary polymer electrolyte for LMP based on cross-linked poly(urethaneacrylate) in presence of a lithium salt and an ionic liquid. Eur Polym J. 2008;44:2153–61.CrossrefGoogle Scholar

  • [225]

    Tizzani C, Appetecchi GB, Carewska M, Kim G-T, Passerini S. Investigation of the electrochemical properties of polymer-LiX-ionic liquid ternary systems. Austr J Chem. 2007;60:47–50.CrossrefGoogle Scholar

  • [226]

    Sirisopanaporn C, Fernicola A, Scrosati B. New, ionic liquid-based membranes for lithium battery application. J Power Sources. 2009;186:490–5.CrossrefGoogle Scholar

  • [227]

    Ferrari S, Quartarone E, Mustarelli P, Magistris A, Fagnoni M, Protti S, Gerbaldi C, Spinella A. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-Nmethylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources. 2010;195:559–66.CrossrefGoogle Scholar

  • [228]

    Navarra MA, Manzi J, Lombardo L, Panero S, Scrosati B, Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries. Chem Sus Chem. 2011;4:125–30.CrossrefGoogle Scholar

  • [229]

    Bansal D, Cassel F, Croce F, Hendrickson M, Plichta E, Salomon M. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. J Phys Chem B. 2005;109:4492–6.PubMedCrossrefGoogle Scholar

  • [230]

    Hutto TE. Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J Electrochem Soc. 2007;154:101–7.CrossrefGoogle Scholar

  • [231]

    Li ZH, Xia QL, Liu LL, Lei GT, Xiao QZ, Gao DS, Zhou XD. Effect of zwitterionic salt on the electrochemical properties of a solid polymer electrolyte with high temperature stability for lithium ion batteries. Electrochim Acta. 2010;56:804–9.CrossrefGoogle Scholar

  • [232]

    Liu LL, Li ZH, Xia QL, Xiao QZ, Lei GT, Zhou XD. Electrochemical study of P(VDF-HFP)/PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics. 2012;18:275–81.CrossrefGoogle Scholar

  • [233]

    Marcilla R, Alcaide F, Sardon H, Pomposo JA, Pozo-Gonzalo C, Mecerreyes D. Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem Commun. 2006;8:482–8.CrossrefGoogle Scholar

  • [234]

    Matsumi N, Sugai K, Miyake M, Ohno H. Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules. 2006;39:6924–7.CrossrefGoogle Scholar

  • [235]

    Ohno H. Molten salt type polymer electrolytes. Electrochim Acta. 2001;46:1407–11.CrossrefGoogle Scholar

  • [236]

    Yoshizawa M, Ogihara H, Ohno H. Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol. 2002;13:589–94.CrossrefGoogle Scholar

  • [237]

    Pont A-L, Marcilla R, de Meatza I, Grande H, Mecerreyes D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources. 2009;188:558–63.CrossrefGoogle Scholar

  • [238]

    Appetecchi GB, Kim G-T, Montanino M, Carewska M, Marcilla R, Mecerreyes D, de Meatza I. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources. 2010;195:3668–75.CrossrefGoogle Scholar

  • [239]

    Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Envir. 2016;1,18–42.CrossrefGoogle Scholar

  • [240]

    Zhang Z, Hu L, Wu H, Weng W, Koch M, Redfern PC, Curtiss LA, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environ Sci. 2013;6:1806–10.CrossrefGoogle Scholar

  • [241]

    Chen Z, Ren Y, Jansen AN, Lin CK, Weng W, Amine K. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nat Commun. 2013;4:66–78.Google Scholar

  • [242]

    von Cresce A, Xu K, Electrolyte additive in support of 5 V Li ion chemistry. J Electrochem Soc. 2011;158:A337–42.CrossrefGoogle Scholar

  • [243]

    Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu R. Water-in-salt electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015;350:938–43.CrossrefPubMedGoogle Scholar

  • [244]

    Kiyohara K, Sugino T, Asaka K. Electrolytes in porous electrodes: effects of the pore size and the dielectric constant of the medium. J Chem Phys. 2010;132:144705–17.CrossrefPubMedGoogle Scholar

  • [245]

    Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem. 2009;182:2046–52.CrossrefGoogle Scholar

  • [246]

    de la Torre Gamarra C, Appetecchi GB, Ulissi U, Varzi A, Varez Alvarez A, Passerini S. NASICON-ionic liquid hybrid electrolytes: an approach for realizing solid-state sodium-ion batteries? J Power Sources. 2018;383:157–63.CrossrefGoogle Scholar

  • [247]

    Keller M, Appetecchi GB, Kim G-T, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J Power Sources. 2017;353:287–97.CrossrefGoogle Scholar

  • [248]

    Ferguson G, Curtiss LA. Applications of molecular modeling to challenges in clean energy. Chapter 12, 217–233. In: ACS Symposium Series 1133 2013ISBN13: 9780841228207eISBN: 9780841228214, Publication Date (Web): June 3 2013.Google Scholar

  • [249]

    Park JW, Ueno K, Tachinawa N, Dokko K, Watanabe M. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium–sulfur batteries. J Phys Chem C. 2013;117:4431–40.CrossrefGoogle Scholar

  • [250]

    Unemoto A, Ogawa H, Gambe Y, Honma I. Development of lithium-sulfur batteries using room temperature ionic liquid-based quasi solid electrolytes. Electrochim Acta 2014;125:386–94.CrossrefGoogle Scholar

  • [251]

    Lin Z, Liang C. Lithium–sulfur batteries: from liquid to solid cells. J Mat Chem. 2015;3:936–58.CrossrefGoogle Scholar

  • [252]

    Angulakshmi N, Stephan AM. Efficient electrolytes for lithium–sulfur batteries. Front Ener Res. 2015;3:Art. 17 p2.Google Scholar

  • [253]

    Wang L, Liu J, Yuan S, Wang Y, Xia Y. To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes. Ener & Envir Sci. 2016;9:224–31.CrossrefGoogle Scholar

  • [254]

    Wang L, Byon HR. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium–sulfur batteries. J Power Sources. 2013;236:207–14.CrossrefGoogle Scholar

  • [255]

    Mizuno F, Nakanishi S, Shirasawa A, Takechi K, Shiga T, Nishikoori H, Iba H. Progress on nonaqueous electrolyte for Li-air batteries. Electrochemistry. 2011;79:876–81.Google Scholar

  • [256]

    Elia G, Hassoun J, Kwak WJ, Sun YK, Scrosati B, Mueller, Bresser D, Passerini S, Oberhumer P, Tsiouvaras N, Reiter J. An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. Nano Lett. 2014;14:6572–7.PubMedCrossrefGoogle Scholar

  • [257]

    Hallinan DT Jr, Balsara NP. Polymer electrolytes. Annual Rev Mater Res. 2013;43:503–25.CrossrefGoogle Scholar

  • [258]

    Krekelberg W, Mittal J, Ganesan V, Truskett T. Phys Rev Lett. 2011;107:148304article.PubMedCrossrefGoogle Scholar

  • [259]

    Park MJ, Choi I, Hong J, Kim O. Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci. 2013;129:2363–76.CrossrefGoogle Scholar

About the article

Published Online: 2018-10-16

Citation Information: Physical Sciences Reviews, Volume 4, Issue 3, 20170150, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0150.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in