Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 24, 2018

Multi-facets of kinetic roughening of interfaces

  • Palash Nath and Debnarayan Jana EMAIL logo
From the journal Physical Sciences Reviews

Abstract

In this review, the authors are going to explore the intriguing aspects of kinetic roughening of interfaces. Interface roughness dynamics connected with various physical processes have been studied through novel microscopic models in connection with experiments. The statistical properties of such rough interfaces appearing in wide range of physical systems are observed to belong to different universality classes characterized by the scaling exponents. With the advancement of characterization techniques, the scaling exponents of thin-film surface (or the morphological evolution of amorphous surfaces eroded by ion bombardment) are easily computed even in situ during the growing (erosion) conditions. The relevant key physical parameters during the dynamics crucially control the overall scaling behaviour as well as the scaling exponents. The non-universal nature of scaling exponents is emphasized on the variations of the physical parameters in experimental studies and also in theoretical models. Overall, this review containing both theoretical and experimental results will unfold some novel features of surface morphology and its evolution and shed important directions to build an appropriate theoretical framework to explain the observations in systematic and consistent experiments.

Acknowledgements

The authors would like to thank Prof. P. B. Sunil Kumar, Dr. Pradipta Kumar Mandal, Prof. S. M. Bhattacharjee for many stimulating discussions on the various aspects. One of us (DJ) would like to acknowledge the technical assistance from Dr. Suman Chowdhury and Mr. Arka Bandyopadhyay in drawing various graphs in this review article. We would also like to thank the anonymous reviewers for critical comments and suggestions to improve the quality of this review.

References

[1] Gupta S, Majumdar SN, Sihcr G. Fluctuating interfaces subject to stochastic resetting. Phys Rev Lett. 2014;112:220601 (4pp).10.1103/PhysRevLett.112.220601Search in Google Scholar PubMed

[2] Carter RWG, Woodroffe CD, editors. Coastal evolution, late quarternary shoreline morphodynamics. Cambridge: Cambridge University Press, 1994.Search in Google Scholar

[3] Sapoval B, Baldassarri A, Gabrielli A. Self-stabilized fractality of seacoasts through damped erosion. Phys Rev Lett. 2004;93:098501 (4pp).10.1103/PhysRevLett.93.098501Search in Google Scholar PubMed

[4] Family F, Vicsek T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J Phys A: Math Gen. 1985;18:L75 (4pp).10.1088/0305-4470/18/2/005Search in Google Scholar

[5] Kim JM, Kosterlitz JM. Growth in a restricted solid-on-solid model. Phys Rev Lett. 1989;62:2289–92.10.1103/PhysRevLett.62.2289Search in Google Scholar

[6] Mandal PK, Jana D. Multifractal behavior of the surfaces evolved with surface relaxation. Phys Rev E. 2008;77:061604 (6pp).10.1103/PhysRevE.77.061604Search in Google Scholar

[7] Mandal PK, Jana D. Non-universal finite-size scaling of rough surfaces. J Phys A: Math Theor. 2009;42:485004 (15pp).10.1088/1751-8113/42/48/485004Search in Google Scholar

[8] Miranda AM, Menezes-Sobrinho IL, Couto MS. Spontaneous imbibition experiment in newspaper sheets. Phys Rev Lett. 2010;104:086101 (4pp).10.1103/PhysRevLett.104.086101Search in Google Scholar PubMed

[9] Mandal PK, Nath P, Jana D. Experimental evidence of multiaffinity of pinned interfaces. Eur Phys J B. 2013;86:132 (6pp).10.1140/epjb/e2013-30901-2Search in Google Scholar

[10] Kumar PBS, Jana D. Imbibition: experiment and simulation Physica A. 1996;224:199–206.10.1016/0378-4371(95)00356-8Search in Google Scholar

[11] Zhang J, Zhang YC, Astrøm P, Levinsen MT. Modeling forest fire by a paper-burning experiment, a realization of the interface growth mechanism. Physica A. 1992;189:383–9.10.1016/0378-4371(92)90050-ZSearch in Google Scholar

[12] Czirók A, Somafai E, Vicsek T. Self-affine roughening in a model experiment on erosion in geomorphology. Physica A. 1994;205:355–66.10.1016/0378-4371(94)90513-4Search in Google Scholar

[13] Somafai E, Czirók A, Vicsek T. Power-law distribution of landslides in an experiment on the erosion of a granular pile. J Phys A: Math Gen. 1994;27:L757–64.10.1088/0305-4470/27/20/001Search in Google Scholar

[14] Mello BA, Chaves AS, Oliveira FA, Fernando A. Discrete atomistic model to simulate etching of a crystalline solid. Phys Rev E. 2001;63:041113 (8pp).10.1103/PhysRevE.63.041113Search in Google Scholar

[15] Barabási AL, Stanley HE. Fractal concepts in surface growth. Cambridge, New York: Cambridge University Press, 1995.10.1017/CBO9780511599798Search in Google Scholar

[16] Meakin P. The growth of rough surfaces and interfaces. Phys Rep. 1993;235:189–289.10.1016/0370-1573(93)90047-HSearch in Google Scholar

[17] Healy TH, Zhang YC. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys Rep. 1985;254:215–414.Search in Google Scholar

[18] Jana D. On a simple yet interesting experiment in complex system. Phys Teach. 1998;40:161–6.Search in Google Scholar

[19] Kardar M, Parisi G, Zhang YC. Dynamic scaling of growing interfaces. Phys Rev Lett. 1986;56:889–92.10.1103/PhysRevLett.56.889Search in Google Scholar PubMed

[20] Edwards SF, Wilkinson DR. The surface statistics of a granular aggregate. Proc R Soc Lond. 1982;A381:17–31.10.1098/rspa.1982.0056Search in Google Scholar

[21] Wolf DE, Kertész J. Surface width exponents for three- and four-dimensional Eden growth. Europhys Lett. 1987;4:651–7.10.1209/0295-5075/4/6/003Search in Google Scholar

[22] Kim Y. Growth equation for a simple vapor deposition model. Prog Theo Phys. 2000;104:495 (10pp).10.1143/PTP.104.495Search in Google Scholar

[23] Jullien R, Botet R. Scaling properties of the surface of the Eden model in d=2, 3, 4. J Phys A. 1985;18:2279–88.10.1088/0305-4470/18/12/026Search in Google Scholar

[24] Sarma SD, Tamborenea P. A new universality class for kinetic growth: One-dimensional molecular-beam epitaxy. Phys Rev Lett. 1991;66:325–8.10.1103/PhysRevLett.66.325Search in Google Scholar PubMed

[25] Horowitz CM, Monetti RA, Albano EV. Competitive growth model involving random deposition and random deposition with surface relaxation. Phys Rev E. 2001;63:066132 (6pp).10.1103/PhysRevE.63.066132Search in Google Scholar PubMed

[26] Pellegrini YP, Jullien R. Roughening transition and percolation in random ballistic deposition. Phys Rev Lett. 1990;64:1745–8.10.1103/PhysRevLett.64.1745Search in Google Scholar PubMed

[27] Silveira FA, Aar ao Reis FDA. Surface and bulk properties of deposits grown with a bidisperse ballistic deposition model. Phys Rev E. 2007;75:061608 (7pp).10.1103/PhysRevE.75.061608Search in Google Scholar PubMed

[28] Kolakowska A, Novotny MA. Comment on “Dynamic properties in a family of competitive growing models”. Phys Rev E. 2010;81:033101 (2pp).10.1103/PhysRevE.81.033101Search in Google Scholar PubMed

[29] Alava M, Dubé M, Rost M. Imbibition in disordered media. Adv Phys. 2004;53:83–175.10.1080/00018730410001687363Search in Google Scholar

[30] Cuerno R, Castro M, Cuerno R, Castro M, Munoz-GarcÍa J, Gago R, et al. Universal non-equilibrium phenomena at submicrometric surfaces and interfaces. Euro Phys J Special Topics. 2007;146:427–41.10.1140/epjst/e2007-00197-4Search in Google Scholar

[31] Ramasco JJ, Lopez JM, Rodriguez MA. Generic dynamic scaling in kinetic roughening. Phys Rev Lett. 2000;84:2199 (4pp).10.1103/PhysRevLett.84.2199Search in Google Scholar PubMed

[32] Juknevicius V, Ruseckas J, Armaitis J. Large scale spatio-temporal behaviour in surface growth scaling and dynamics of slow height variations in generalized two-dimensional Kuramoto-Sivashinsky equations. Eur Phys J. B 2017;90:163 (12pp).10.1140/epjb/e2017-70567-0Search in Google Scholar

[33] Garca-Carranco SM, Bory-Reyes J, Balankin AS. The crude oil price bubbling and universal scaling dynamics of price volatility. Physica A. 2016;452:60–8.10.1016/j.physa.2016.02.006Search in Google Scholar

[34] Buldyrev SV, Barabási AL, Caserta F, Havlin S, Stanley HE, Vicsek T. Anomalous interface roughening in porous media: experiment and model. Phys Rev A. 1992;45:R8313–6.10.1103/PhysRevA.45.R8313Search in Google Scholar

[35] Nath P, Mandal PK, Jana D. Kardar-Parisi-Zhang universality class of a discrete erosion model. Int J Mod Phys C. 2015;26:1550049 (11pp).10.1142/S0129183115500497Search in Google Scholar

[36] Nath P, Jana D. Observation of nonuniversal scaling exponent in a novel erosion model. Int J Mod Phys C. 2015;26:1550115 (13pp).10.1142/S0129183115501156Search in Google Scholar

[37] Chan WL, Chason E. Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J Appl Phys. 2007;101:121301 (46pp).10.1063/1.2749198Search in Google Scholar

[38] Nabiyouni G, Jalali Farahani B. Anomalous scaling in surface roughness evaluation of electrodeposited nanocrystalline Pt thin films. Appl Surf Sci. 2009;256:674–82.10.1016/j.apsusc.2009.08.041Search in Google Scholar

[39] Yadava RP, Dwivedi S, Mittal AK, Kumar M, Pandey AC. Fractal and multifractal analysis of LiF thin film surface. Appl Surf Sci. 2012;261:547–53.10.1016/j.apsusc.2012.08.053Search in Google Scholar

[40] Gredig T, Silverstein EA, Byrne MP. Height–Height correlation function to determine grain size in iron phthalocyanine thin films. J Phys Conf Series. 2013;417:012069 (5pp).10.1088/1742-6596/417/1/012069Search in Google Scholar

[41] Kolanek K, Tallarida M, Michling M, Schmeisser D. In situ study of the atomic layer deposition of HfO2 on Si. J Vac Sci Technol. 2012;30:01A143(15pp); Kolanek K, Tallarida M, Schmeisser D. Height distribution of atomic force microscopy images as a tool for atomic layer deposition characterization. J Vac Sci Technol. 2013;31:01A104 (13pp); Characterization of HfO2/La2 O3 layered stacking deposited on Si substrate. J Vac Sci Technol B. 2013;31:01A113 (5pp).10.1116/1.3668080Search in Google Scholar

[42] Chanphana R, Chatraphorn P, Dasgupta C. Healing time for the growth of thin films on patterned substrates. Physica A. 2014;407:160–74.10.1016/j.physa.2014.03.070Search in Google Scholar

[43] Cureno R, Vazquez L. Advances in condensed matter and statistical physics, edited by E. Korutcheva and R. Cuerno. New York: Nova Science Publishers, 2004:237–59.Search in Google Scholar

[44] Krug J. Origins of scale invariance in growth processes. Adv Phys. 1997;46:139–282.10.1080/00018739700101498Search in Google Scholar

[45] Meakin P. Fractals, scaling and growth far from equilibrium. Cambridge: Cambridge University Press, 1998.Search in Google Scholar

[46] Krug J. Turbulent interfaces. Phys Rev Lett. 1994;72:2907–10.10.1103/PhysRevLett.72.2907Search in Google Scholar PubMed

[47] Krug J, Spohn H. Solids far from equilibrium, edited by C. Godréche. Cambridge: Cambridge University Press, 1992.Search in Google Scholar

[48] Krim J, Palasantzas G. Experimental observation of self–affine scaling and kinetic roughening at sub–micron lengthscales. Int J Mod Phys B. 1995;9:599–632.10.1142/S0217979295000239Search in Google Scholar

[49] Gokhale S, Nagamanasa KH, Santosh V, Sood AK, Ganpathy R. Directional grain growth from anisotropic kinetic roughening of grain boundaries in sheared colloidal crystals. PNAS. 2012;109:20314–9.10.1073/pnas.1210456109Search in Google Scholar PubMed PubMed Central

[50] Malcai O, Lidar DA, Biham O, Avnir D. Scaling range and cutoffs in empirical fractals. Phys Rev E. 1997;56:2817–28.10.1103/PhysRevE.56.2817Search in Google Scholar

[51] Ojeda F, Cuerno R, Salvarezza R, Vázquez L. Dynamics of rough interfaces in chemical vapor deposition: experiments and a model for silica films. Phys Rev Lett. 2000; 84:3125–8;Ojeda F, Cuerno R, Salvarezza R, Agulló–Rueda F, Vázquez L. Modeling heterogeneity and memory effects on the kinetic roughening of silica films grown by chemical vapor deposition. Phys Rev B. 2003;67:245416 (13pp).10.1103/PhysRevLett.84.3125Search in Google Scholar PubMed

[52] Gago R, Vázquez L, Cuerno R, Varela M, Ballesteros C, Albella JM. Production of ordered silicon nanocrystals by low–energy ion sputtering. Appl Phys Lett. 2001;78:3316–8.10.1063/1.1372358Search in Google Scholar

[53] Henkel M, Noh JD, Pleimling M. Phenomenology of aging in the Kardar–Parisi–Zhang equation. Phys Rev E. 2012;85:030102 (5pp).10.1103/PhysRevE.85.030102Search in Google Scholar PubMed

[54] Allegra N, Fortin JY, Henkel M. Boundary crossover in semi-infinite non-equilibrium growth processes. J Stat Mech. 2014;2014:P02018.10.1088/1742-5468/2014/02/P02018Search in Google Scholar

[55] Imamura T, Sasamoto T. Exact solution for the stationary Kardar–Parisi–Zhang equation. Phys Rev Lett. 2002;108:190603 (5pp).10.1103/PhysRevLett.108.190603Search in Google Scholar PubMed

[56] Calabrese P, Doussal PL. Exact solution for the Kardar–Parisi–Zhang equation with flat initial conditions. Phys Rev Lett. 2011;106:250603 (4pp).10.1103/PhysRevLett.106.250603Search in Google Scholar PubMed

[57] Santalla SN, Lagura JR, Gatta TL, Cuerno R. Random geometry and the Kardar-Parisi-Zhang (KPZ) universalility class. New J Phys. 2015;17:033018(13pp); Crdoba-Torres P, Santalla SN, Cuerno R, Rodrguez-Laguna R. Kardar-Parisi-Zhang Universality in first-passage percolation: the role of geodesic degeneracy. ArXiV:1802.05253.Search in Google Scholar

[58] Sasamoto T, Spohn H. Point–interacting Brownian motions in the KPZ universality class. Electr J Probab. 2015;20:1 (28pp).10.1214/EJP.v20-3926Search in Google Scholar

[59] Hairer M, Quastel J. A class of growth models rescaling to KPZ. ArXiV:1512.07845v1.Search in Google Scholar

[60] Wio HS, Rodrguez MA, Gallego R, Deza RR, Revelli JA. KPZ dynamics from a variational perspective: potential landscape, time behavior, and other issues. ArXiV:1511.03727v1.Search in Google Scholar

[61] Takenchi KA, Sano M, Sasamoto T, Spohn H. Growing interfaces uncover universal fluctuations behind scale invariance. Sci Rep. 2011;1:34 (5 pp).10.1038/srep00034Search in Google Scholar PubMed PubMed Central

[62] Huergo MAC, Pasquale MA, González PH, Bolzán AE, Arvia AJ. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells. Phys Rev E. 2012;85:011918 (9pp).10.1103/PhysRevE.85.011918Search in Google Scholar PubMed

[63] Khanin K, Nechaev S, Oshanin G, Sobolevski A, Vasilyev O. Ballistic deposition patterns beneath a growing Kardar–Parisi–Zhang interface. Phys Rev E. 2010;82:061107 (10pp).10.1103/PhysRevE.82.061107Search in Google Scholar PubMed

[64] Wolf DE, Villain J. Growth with surface diffusion. Europhys Lett. 1990;13:389–94.10.1209/0295-5075/13/5/002Search in Google Scholar

[65] Alves SG, Moreira JG. Transitions in a probabilistic interface growth model. J Stat Mech. 2011;P04022 (9pp).10.1088/1742-5468/2011/04/P04022Search in Google Scholar

[66] Anspach N, Linz SJ. Modeling particle redeposition in ion-beam erosion processes under normal incidence. J Stat Mech. 2010;P06023 (27pp).10.1088/1742-5468/2010/06/P06023Search in Google Scholar

[67] Kim JM, Sarma SD. Growth in a restricted–curvature model. Phys Rev E. 1993;48:2599–602.10.1103/PhysRevE.48.2599Search in Google Scholar PubMed

[68] Jeong HC, Kim JM. Restricted curvature model with suppression of extremal height. Phys Rev E. 2002;66:051605 (5pp).10.1103/PhysRevE.66.051605Search in Google Scholar PubMed

[69] Jeong HC, Kim JM, Choi H, Kim Y. Anomaly of the height–height correlation functions in self–flattening surface growth. Phys Rev E. 2003;67:046117 (4pp).10.1103/PhysRevE.67.046117Search in Google Scholar PubMed

[70] Pagnani A, Parisi G. Multisurface coding simulations of the restricted solid–on–solid model in four dimensions. Phys Rev E. 2013;87:010102 (4pp).10.1103/PhysRevE.87.010102Search in Google Scholar

[71] Oliveira TJ, Aar ao Reis FDA. Roughness exponents and grain shapes. Phys Rev E 2011;83:041608 (7pp).10.1103/PhysRevE.83.041608Search in Google Scholar

[72] Lita AE, Sanchez JE. Effects of grain growth on dynamic surface scaling during the deposition of Al polycrystalline thin films. Phys Rev B. 2000;61:7692–9.10.1103/PhysRevB.61.7692Search in Google Scholar

[73] Kleinke MU, Davalos J, da Fonseca CP, Gorenstein A. Scaling laws in annealed LiCoOx films. Appl Phys Lett. 1999;74:1683–5.10.1063/1.123654Search in Google Scholar

[74] Vasco E, Polop C, Ocal C. Growth atomic mechanisms of pulsed laser deposited La modified PbTiO3 perovskites. Eur Phys J B. 2003;35:49.10.1140/epjb/e2003-00255-7Search in Google Scholar

[75] Ehrlich G, Hudda FG. Atomic view of surface self-diffusion: tungsten on tungsten. J Chem Phys. 1966;44:1039–49.10.1063/1.1726787Search in Google Scholar

[76] Schwoebel RL. Step motion on crystal surfaces. J Appl Phys. 1966;37:3682–6.10.1063/1.1707904Search in Google Scholar

[77] Politi P, Grenet G, Marty A, Ponchet A, Villain J. Instabilities in crystal growth by atomic or molecular beams. Phys Rep. 2000;324:271–406.10.1016/S0370-1573(99)00046-0Search in Google Scholar

[78] Pierre-Louis O, DOrsogna MR, Einstein TL. Edge diffusion during growth: the Kink Ehrlich-Schwoebel effect and resulting instabilities. Phys Rev Lett. 1998;82:3661–4.10.1103/PhysRevLett.82.3661Search in Google Scholar

[79] Kaufmanna NAK, Lahourcadea L, Hourahineb B, Martina D, Grandjean N. Critical impact of EhrlichSchwbel barrier on GaN surface morphology during homoepitaxial growth. J Cryst Growth. 2016;433:36–42.10.1016/j.jcrysgro.2015.06.013Search in Google Scholar

[80] Leal FF, Ferreira SC, Ferreira SO. Modelling of epitaxial film growth with an EhrlichSchwoebel barrier dependent on the step height. J Phys: Condens Matter. 2011;23:292201 (6pp).10.1088/0953-8984/23/29/292201Search in Google Scholar PubMed

[81] Gianfrancesco AG, Tselev A, Baddorf AP, Kalinin SV, Vasudevan RK. The EhrlichSchwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach. Nanotechnology. 2015;26:455705.10.1088/0957-4484/26/45/455705Search in Google Scholar PubMed

[82] Gerlach R, Maroutian T, Douillard L, Martinotti D, Ernst HJ. A novel method to determine the EhrlichSchwoebel barrier. Surf Sci. 2001;480:97–102.10.1016/S0039-6028(01)00823-8Search in Google Scholar

[83] Li SC, Han Y, Jia JF, Xue QK, Liu F. Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films. Phys Rev B. 2006;74:195428.10.1103/PhysRevB.74.195428Search in Google Scholar

[84] Banerjee K, Shamanna J, Ray S. Surface morphology of a modified ballistic deposition model. Phys Rev E. 2014;90:022111 (7pp).10.1103/PhysRevE.90.022111Search in Google Scholar PubMed

[85] Mal B, Ray S, Shamanna J. Revisiting surface diffusion in random deposition. Eur Phys J B. 2011; 82:341(7pp); Mal B, Ray S, Shamanna J. Surface properties and scaling behavior of a generalized ballistic deposition model. Phys Rev E. 2016;93:022121 (6pp).10.1140/epjb/e2011-10949-8Search in Google Scholar

[86] Horowitz CM, Albano EV. Dynamic scaling for a competitive growth process: random deposition versus ballistic deposition. J Phys A. 2001;34:357.10.1088/0305-4470/34/3/303Search in Google Scholar

[87] Horowitz CM, Albano EV. Dynamic properties in a family of competitive growing models. Phys Rev E. 2006;73:031111 (8pp).10.1103/PhysRevE.73.031111Search in Google Scholar PubMed

[88] Robledo A, Grabill CN, Kuebler SM, Dutta A, Heinrich H, Bhattacharya A. Morphologies from slippery ballistic deposition model: a bottom–up approach for nanofabrication. Phys Rev E. 2011;83:051604 (9pp).10.1103/PhysRevE.83.051604Search in Google Scholar PubMed

[89] Lehnen C, Lu TM. Morphological evolution in ballistic deposition. Phys Rev B. 2010;82:085437 (4pp).10.1103/PhysRevB.82.085437Search in Google Scholar

[90] Family F. Scaling of rough surfaces: effects of surface diffusion. J Phys A. 1986;19:L441–6.10.1088/0305-4470/19/8/006Search in Google Scholar

[91] Topic N, Pöschel T. Steepest descent ballistic deposition of complex shaped particles. J Comput Phys. 2016;308:421–37.10.1016/j.jcp.2015.12.052Search in Google Scholar

[92] Efraim Y, Taitelbaum H. Can Ising model and/or QKPZ equation properly describe reactive–wetting interface dynamics? Cent Eur J Phys. 2009;7:503 (6pp).10.2478/s11534-009-0044-6Search in Google Scholar

[93] Corberi F, Lippiello E, Zannetti M. Roughening of an interface in a system with surface or bulk disorder. J Phys A (UK). 2016;49:185001 (16pp).10.1088/1751-8113/49/18/185001Search in Google Scholar

[94] Mullins WW. Theory of thermal grooving. J Appl Phys. 1957;28:333–9;Herring C. The physics of powder metallurgy, edited W. E. Kingston. New York; McGraw-Hill, 1951.10.1063/1.1722742Search in Google Scholar

[95] Villain J. Continuum models of crystal growth from atomic beams with and without desorption. J Phys I France. 1991;1:19–42.10.1051/jp1:1991114Search in Google Scholar

[96] Lai ZW, Sarma SD. Kinetic growth with surface relaxation: continuum versus atomistic models. Phys Rev Lett. 1991;66:2348–51.10.1103/PhysRevLett.66.2348Search in Google Scholar PubMed

[97] Chen YJ, Zapperi S, Sethna JP. Crossover behavior in interface depinning. Phys Rev E. 2015;92:022146 (7pp).10.1103/PhysRevE.92.022146Search in Google Scholar PubMed

[98] Vivo E, Nicoli M, Engler M, Michely T, Vázquez L, Cuerno R. Surface anisotropy in surface kinetic roughening: analysis and experiments. Phys Rev E. 2012;86:245427 (8pp).10.1103/PhysRevB.86.245427Search in Google Scholar

[99] Vivo E, Nicoli M, Cuerno R. Strong anisotropy in two dimensional surfaces with generic scale invariance: gaussian and related models. Phys Rev E. 2012;86:051611 (12pp).10.1103/PhysRevE.86.051611Search in Google Scholar PubMed

[100] Vivo E, Nicoli M, Cuerno R. Strong anisotropy in two dimensional surfaces with generic scale invariance: non–linear effects. Phys Rev E. 2014;89:042407 (21pp).10.1103/PhysRevE.89.042407Search in Google Scholar PubMed

[101] Garg SK, Cuerno R, Kanjilal D, Som T. Anomalous behavior in temporal evolution of ripple wavelength under medium energy Ar+ ion bombardment on Si: a case of initial wavelength selection. J Appl Phys USA. 2016;119:225301 (7pp).10.1063/1.4953378Search in Google Scholar

[102] Sperlin BA, Abelson JR. Kinetic roughening of amorphous silicon during hot–wire chemical vapor deposition at low temperature. J Appl Phys. 2007;101:024915 (7pp).10.1063/1.2424527Search in Google Scholar

[103] Aurongzeb D, Washinton E, Basavaraj M, Berg JM, Temkin H, Holtz M. Nanoscale surface roughening in ultrathin aluminum films. J Appl Phys. 2006;100:114320 (4pp).10.1063/1.2365388Search in Google Scholar

[104] Pal A, Ghosh R, Giri PK. Early stages of growth of Si nanowires by metal assisted chemical etching: a scaling study. Appl Phys Lett. 2015;107:072104 (5pp).10.1063/1.4928714Search in Google Scholar

[105] Drotar JT, Zhao YP, Lu TM, Wang GC. Surface roughening in shadowing growth and etching in 2 + 1 dimensions. Phys Rev B. 2000;62:2118–25.10.1103/PhysRevB.62.2118Search in Google Scholar

[106] Yao JH, Guo H. Shadowing instability in three dimensions. Phys Rev E. 1993;47:1007–11.10.1103/PhysRevE.47.1007Search in Google Scholar

[107] Pelliccione M, Karabacak T, Gaire C, Wang GC, Lu TM. Mound formation in surface growth under shadowing. Phys Rev B 2006;74:125420 (10pp).10.1103/PhysRevB.74.125420Search in Google Scholar

[108] Wang L, Walker G, Chai J, Iacopi A, Fernandes A, Dimitrijev S. Kinetic surface roughening and wafer bow control in heteroepitaxial growth of 3C–SiC on Si(111) substrates. Sci Rep. 2015;5:15423 (8pp).10.1038/srep15423Search in Google Scholar PubMed PubMed Central

[109] Bouchbinder E, Procaccia I, Santucci S, Vaenl L. Fracture surfaces as multiscaling graphs. Phys Rev Lett. 2006;96:055509 (4pp).10.1103/PhysRevLett.96.055509Search in Google Scholar PubMed

[110] Bouchbinder E, Mathiesen J, Procaccia I. Roughening of fracture surfaces: the role of plastic deformation. Phys Rev Lett. 2004;92:245505 (4pp).10.1103/PhysRevLett.92.245505Search in Google Scholar PubMed

[111] Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett. 1987;59:381–4.10.1103/PhysRevLett.59.381Search in Google Scholar PubMed

[112] Chowdhury D, Ghose D, Mollick SA, Satpati B, Bhattacharya SR. Nanorippling of ion irradiated GaAs (001) surface near the sputter-threshold energy. Phys Stat Solidi (B) 2015;252:811–5.10.1002/pssb.201451612Search in Google Scholar

[113] Brú A, Albertos S, Garc&’ıa-Asenjo JAL, Brú I. Pinning of tumoral growth by enhancement of the immune response. Phys Rev Lett. 2004;92:238101 (4pp).10.1103/PhysRevLett.92.238101Search in Google Scholar PubMed

[114] Barness D, Efraim Y, Taitelbaum H, Sinvani M, Shaulov A, YeshurunY. Kinetic roughening of magnetic flux fronts in Bi2Sr2CaCu2O8+δ crystals with columnar defects. Phys Rev B. 2012;85:174516 (5pp).10.1103/PhysRevB.85.174516Search in Google Scholar

[115] Tang LH, Kardar M, Dhar D. Driven depinning in anisotropic media. Phys Rev Lett. 1995;74:920–3.10.1103/PhysRevLett.74.920Search in Google Scholar PubMed

[116] Zhao YP. Kinetic roughening in polymer film growth by vapor deposition. Phys Rev Lett. 2000;85:3229–32.10.1103/PhysRevLett.85.3229Search in Google Scholar PubMed

[117] Lai ZW, Sarma SD. Kinetic growth with surface relaxation: continuum versus atomistic models. Phys Rev Lett. 1991;66:2348–51.10.1103/PhysRevLett.66.2348Search in Google Scholar PubMed

[118] d’Affara G, Caldore I. (Communita Mountana Centro Caldore, Cortina, 1990).Search in Google Scholar

[119] Verma P, Mager MD, Melosh MA. Rough-smooth-rough dynamic interface growth in supported lipid bilayers. Phys Rev E. 2014;89:012404 (5pp).10.1103/PhysRevE.89.012404Search in Google Scholar PubMed

[120] Straumal BB, Kogenkova OA, Gornakova AS, Sursaeva VG, Baretzky B. Review: garin boundary faceting-roughening phenomena. J Mater Sci 2016;54:382–404.10.1007/s10853-015-9341-1Search in Google Scholar

[121] Straumal BB, Semenov VN, Kogenkova OA, Watanabe T. Pokrovsky-Talapov critical behavior and rough-to-rough ridges of the ∑3 coincidence tilt boundary in Mo. Phys Rev Lett. 2004;92:19610 (4pp).10.1103/PhysRevLett.92.196101Search in Google Scholar PubMed

[122] Andreed AF. Faceting phase transitions of crystals. Sov Phys JETP. 1981;53:1063–9.Search in Google Scholar

[123] Pokrovsky VL, Talapov AL. Ground state, spectrum and phase diagram of two-dimensional incommensurate crystals. Phys Rev Lett. 1979;42:65 (4pp).10.1142/9789814317344_0020Search in Google Scholar

[124] Straumal BB, Gornakova AS, Sursaeva VG, Yashoniko VP. Second order faceting-foughening of teh tilt grain boundary in zinc. Int J Mater Res. 2009;100:525–9.10.3139/146.110058Search in Google Scholar

[125] Nasehnejad M, Nabiyouni G, Shahraki MG. Thin film growth by 3D multi-particle diffusion limited aggregation model: anomalous roughening and fractal analysis. Physica A. 2018;493:135–47.10.1016/j.physa.2017.09.099Search in Google Scholar

[126] Nasehnejad M, Shahraki MG, Nabiyouni G. Atomic force microscopy study, kinetic roughening and multifractal analysis of electrodeposited silver films. Appl Surf Sci. 2016;389:735–41.10.1016/j.apsusc.2016.07.134Search in Google Scholar

[127] Schneider NM, Park JH, Grogan JM, Steingart DA, Bau HH, Ross FM. Nanoscale evolution of interface morphology during electrodeposition. Nat Commun. 2017;8:2174 (10pp).10.1038/s41467-017-02364-9Search in Google Scholar PubMed PubMed Central

[128] Townsend ER, Enckevort WJP, Meijer JAM, Vlieg E. Additive enhanced creeping of sodium chloride crystals. Cryst Growth Des. 2017;17:3107–15.10.1021/acs.cgd.7b00023Search in Google Scholar PubMed PubMed Central

[129] Hsu C-L, Juang M-Y, Lin P-W, Liaw B-R, Shih C-T. Temperature-dependent morphology and characteristic parameters of annealed gold nanolayers. Phys Status Solidi B. 2017;254:1600855 (5pp).10.1002/pssb.201600855Search in Google Scholar

[130] Harel M, Taitelbaum H. Effect of temperature on the dynamics and geometry of reactive-wetting interfaces around room temperature. Phys Rev E. 2017;96:062801 (7pp).10.1103/PhysRevE.96.062801Search in Google Scholar PubMed

[131] Olafson KN, Rimer JD, Vekilov PG. Early onset of kinetic roughening due to a finite step width in hematin crystallization. Phys Rev Lett. 2017;119:198101 (4pp).10.1103/PhysRevLett.119.198101Search in Google Scholar PubMed

[132] Mondal S, Chowdhury D, Barman P, Bhattacharyya SR. Growth dynamics of copper thin film deposited by soft-landing of size selected nanoclusters. Eur Phys J. D 2017;71:327 (5pp).10.1140/epjd/e2017-80119-5Search in Google Scholar

[133] Santalla SN, RodrÍguez-Laguna J, Abad JP, MarÍn I, Espinosa MM, Muñoz-GarcÍa J. et al. Non-universality of front fluctuations for compact colonies of non-motile bacteria. arXiv:1702.03903.Search in Google Scholar

[134] Orrillo PA, Santalla SN, Cuerno R,Vzquez L, Ribotta SB, Gassa LM, et al. Morphological stabilization and KPZ scaling by electrochemically induced co-deposition of nanostructured NiW alloy films. Sci Rep. 2017;7:17997(12pp).10.1038/s41598-017-18155-7Search in Google Scholar PubMed PubMed Central

[135] Castro M, Cuerno R, Nicoli M, Vzquez L, Buijnsters JG. Universality of cauliflower-like fronts: from nanoscale thin films to macroscopic plants. New J Phys. 2012;14:103039 (15pp).10.1088/1367-2630/14/10/103039Search in Google Scholar

[136] Cuerno R, Castro M. Transients due to instabilities hinder Kardar-Parisi-Zhang scaling: a unified derivation for surface growth by electrochemical and chemical vapor deposition. Phys Rev Lett. 2001;87:236103 (4pp).10.1103/PhysRevLett.87.236103Search in Google Scholar PubMed

[137] Nicoli M, Castro M, Cuerno R. Unified moving-boundary model with fluctuations for unstable diffusive growth. Phys Rev E. 2008;78:021601 (17pp).10.1103/PhysRevE.78.021601Search in Google Scholar PubMed

Published Online: 2018-11-24

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2017-0109/html
Scroll to top button