Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives

Tina Nestler
  • Corresponding author
  • TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger Str. 23, 09599 Freiberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elsa Roedern
  • Materials for Energy Conversion, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikolai F. Uvarov
  • Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of the Russian Academy of Sciences, Kutateladze 18, 630128 Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juliane Hanzig / Giuseppe Antonio Elia / Mateo de Vivanco
Published Online: 2018-10-13 | DOI: https://doi.org/10.1515/psr-2017-0115

Abstract

Separators and electrolytes provide electronic blockage and ion permeability between the electrodes in electrochemical cells. Nowadays, their performance and cost is often even more crucial to the commercial use of common and future electrochemical cells than the chosen electrode materials. Hence, at the present, many efforts are directed towards finding safe and reliable solid electrolytes or liquid electrolyte/separator combinations. With this comprehensive review, the reader is provided with recent approaches on this field and the fundamental knowledge that can be helpful to understand and push forward the developments of new electrolytes for rechargeable batteries. After presenting different types of separators as well as the main hurdles that are associated with them, this work focuses on promising material classes and concepts for next-generation batteries. First, chemical and crystallographic concepts and models for the description and improvement of the ionic conductivity of bulk and composite solid electrolytes are outlined. To demonstrate recent perspectives, research highlights have been included in this work: magnesium borohydride-based complexes for solid-state Mg batteries as well as all-in-one rechargeable SrTiO3 single-crystal energy storage. Furthermore, ionic liquids pose a promising safe alternative for future battery cells. An overview on their basic principles and use is given, demonstrating their applicability for Li-ion systems as well as for so-called post-Li chemistries, such as Mg- and Al-ion batteries.

Keywords: solid electrolytes; ionic liquids; Mg-ion battery; Al-ion battery; solid electrolyte–electrode interface; separators

References

  • [1]

    Nestler T, Schmid R, Münchgesang W, Bazhenov V, Schilm J, Leisegang T, et al. Separators-technology review: ceramic based separators for secondary batteries. In: AIP Conference Proceedings, volume 1597. AIP, 2014: 155–184.Google Scholar

  • [2]

    https://electrek.co/2016/08/15/tesla-model-s-catches-fire-test-drive-france/ (2016).Google Scholar

  • [3]

    https://www.cnet.com/news/why-is-samsung-galaxy-note-7-exploding-overheating/ (2016).Google Scholar

  • [4]

    Volta A. On the Electricity excited by the mere Contact of conducting Substances of different kinds. Philos Trans R Soc 1800;2:403Google Scholar

  • [5]

    Washburn E. Thirds to f. US Patent 482,444 (1892).Google Scholar

  • [6]

    Randell CF, White NC. Separators for electrochemical cells. WO Patent App. PCT/GB1996/001,318 (1996).Google Scholar

  • [7]

    Arora P, Zhang Z. Battery separators. Chem Rev. 2004;104:4419.CrossrefPubMedGoogle Scholar

  • [8]

    Daniel C, Besenhard JO. Handbook of battery materials. Weinheim, Germany: Wiley, 2012.Google Scholar

  • [9]

    Huang X. Separator technologies for lithium-ion batteries. J Solid State Electrochem. 2011;15:649.CrossrefGoogle Scholar

  • [10]

    Dafler JR. The ultimate polymer application: Resin-bonded cellulose separators for lead–acid batteries. J Appl Polym Sci. 1977;2551:21.Google Scholar

  • [11]

    Weber CJ, Geiger S, Falusi S, Roth M. International Freiberg Conference on Electrochemical Storage Materials - ESTORM 2013. American Institute of Physics: AIP Conference Proceedings, 2014.Google Scholar

  • [12]

    Costa CM, Gomez Ribelles J, Lanceros-Méndez S, Appetecchi G, Scrosati B. Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J Power Sour. 2014;245:779.Google Scholar

  • [13]

    Ji Y, Jiang Y. Increasing the electrical conductivity of poly (vinylidene fluoride) by KrF excimer laser irradiation. Appl Phys Lett, 2006;89:221103.CrossrefGoogle Scholar

  • [14]

    Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47:2930.CrossrefGoogle Scholar

  • [15]

    Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sour. 2007;164:351.CrossrefGoogle Scholar

  • [16]

    Wu MS, Liu KH, Wang YY, Wan CC. Heat dissipation design for lithium-ion batteries. J Power Sour. 2002;109:160.CrossrefGoogle Scholar

  • [17]

    Barnett B, Ofer D, Sriramulu S, Stringfellow R. Lithium-ion batteries, safety. In: Batteries for sustainability. New York: Springer, 2013:285–318.Google Scholar

  • [18]

    Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy & Environ Sci. 2013;6:734.CrossrefGoogle Scholar

  • [19]

    Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation a review. Renewable Sustainable Energy Rev. 2013;20:430.CrossrefGoogle Scholar

  • [20]

    Frost, Sullivan. High-tech materials alert 15th March 2013. Frost & Sullivan, 2013.Google Scholar

  • [21]

    Roth EP, Doughty DH, Pile DL. Effects of separator breakdown on abuse response of 18650 Li-ion cells. J Power Sour. 2007;174:579.CrossrefGoogle Scholar

  • [22]

    Orendorff CJ. The role of separators in Lithium-ion cell safety. Interface-Electrochem Soc. 2012;21:61.CrossrefGoogle Scholar

  • [23]

    Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, et al. A review of lithium and non-lithium based solid state batteries. J Power Sour. 2015;282:299.CrossrefGoogle Scholar

  • [24]

    Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363.CrossrefGoogle Scholar

  • [25]

    Tubandt C, Lorenz E. Molekularzustand und elektrisches LeitvermoÈgen kristallisierter Salze. Z Phys Chem. 1914;24:513.Google Scholar

  • [26]

    Wen Z, Hu Y, Wu X, Han J, Gu Z. Main challenges for high performance NAS battery: materials and interfaces. Adv Funct Mater. 2013;23:1005.CrossrefGoogle Scholar

  • [27]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, et al. A lithium superionic conductor. Nat Mater. 2011;10:682.CrossrefPubMedGoogle Scholar

  • [28]

    Fotheringham U, Schneider M, Hochrein O, Biedenbender S, Lauer S, Kluge M. Lithium ion-conductive glass ceramic, method for producing a lithium ion-conductive glass ceramic, ion conductor and use of the ion conductor. WO Patent App. PCT/EP2013/054,732 (2013).Google Scholar

  • [29]

    Uneme Y, Tamura S, Kawato T, Imanaka N. Moderate temperature operative sulfur dioxide gas sensor based on an Ag+ ion conducting solid. Electrochem Solid-State Lett. 2011;14:J38.CrossrefGoogle Scholar

  • [30]

    Maier J. Space charge regions in solid two-phase systems and their conduction contribution I. Conductance enhancement in the system ionic conductor-inertphase and application on AgCl: Al2O3 and AgCl: SiO2. J Phys Chem Solids. 1985;46:309.Google Scholar

  • [31]

    Yao YFY, Kummer J. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem. 1967;29:2453.CrossrefGoogle Scholar

  • [32]

    de Jongh P, Blanchard D, Matsuo M, Udovic T, Orimo S. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries. Appl Phys A. 2016;122:1.Google Scholar

  • [33]

    Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sour. 2010;195:2431.CrossrefGoogle Scholar

  • [34]

    Anantharamulu N, Rao KK, Rambabu G, Kumar BV, Radha V, Vithal M. A wide-ranging review on Nasicon type materials. J Mater Sci. 2011;46:2821.CrossrefGoogle Scholar

  • [35]

    Udovic TJ, Matsuo M, Tang WS, Wu H, Stavila V, Soloninin AV, et al. Exceptional superionic conductivity in disordered sodium Decahydro-closo-decaborate. Adv Mater. 2014;26:7622.CrossrefPubMedGoogle Scholar

  • [36]

    Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ionics. 2009;180:911.CrossrefGoogle Scholar

  • [37]

    Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater. 2013;61:759.CrossrefGoogle Scholar

  • [38]

    Menezes PV, Martin J, Schaefer M, Staesche H, Roling B, Weitzel KM. Bombardment induced ion transport Part II. Experimental potassium ion conductivities in borosilicate glass. Phys Chem Chem Phys. 2011;13:20123.Google Scholar

  • [39]

    Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39:4370.CrossrefPubMedGoogle Scholar

  • [40]

    Maier J, Reichert B. Ionic transport in heterogeneously and homogeneously Doped Thallium (I)-Chloride. Berichte der Bunsengesellschaft für physikalische Chemie. 1986;90:666.CrossrefGoogle Scholar

  • [41]

    Imanaka N, Tamura S, Adachi G. Ammonia sensor based on ionically exchanged NH4+ gallate solid electrolytes. Electrochem Solid-State Lett. 1998;1:282.Google Scholar

  • [42]

    Banno N, Sakamoto T, Iguchi N, Sunamura H, Terabe K, Hasegawa T, et al. Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch. Electron Devices, IEEE Trans. 2008;55:3283.CrossrefGoogle Scholar

  • [43]

    Reddy MA, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059.CrossrefGoogle Scholar

  • [44]

    Patro L, Hariharan K. Fast fluoride ion conducting materials in solid state ionics: an overview. Solid State Ionics. 2013;239:41.CrossrefGoogle Scholar

  • [45]

    Rongeat C, Reddy MA, Witter R, Fichtner M. Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J Phys Chem C. 2013;117:4943.Google Scholar

  • [46]

    Hibino T, Kobayashi K, Nagao M. An all-solid-state rechargeable aluminum–air battery with a hydroxide ion-conducting Sb(v)-doped SnP2 O7 electrolyte. J Mater Chem A. 2013;1:14844.CrossrefGoogle Scholar

  • [47]

    Kharton VV, Marques FMB, Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics. 2004;174:135.CrossrefGoogle Scholar

  • [48]

    Fujii K, Esaki Y, Omoto K, Yashima M, Hoshikawa A, Ishigaki T, et al. New perovskite-related structure family of oxide-ion conducting materials NdBaInO4. Chem Mater. 2014;26:2488.CrossrefGoogle Scholar

  • [49]

    Farrington G, Dunn B. Divalent beta”-aluminas: high conductivity solid electrolytes for divalent cations. Solid State Ionics. 1982;7:267.CrossrefGoogle Scholar

  • [50]

    Dunn B, Farrington G. Fast divalent ion conduction in Ba++, Cd++ and Sr++ beta” aluminas. Mater Res Bull. 1980;15:1773.Google Scholar

  • [51]

    Ikeda S, Takahashi M, Ishikawa J, Ito K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in Mg Zr PO4 system. Solid State Ionics. 1987;23:125.Google Scholar

  • [52]

    Carrillo-Cabrera W, Thomas JO, Farrington GC. The ionic distribution in trivalent Gd3+ β”-alumina. Solid State Ionics. 1983;9:245.Google Scholar

  • [53]

    Dunn B, Farrington G. Trivalent ion exchange in beta” alumina. Solid State Ionics. 1983;9:223.Google Scholar

  • [54]

    Sattar S, Ghosal B, Underwood M, Mertwoy H, Saltzberg M, Frydrych W, et al. Synthesis of Di-and trivalent β”-aluminas by ion exchange. J Solid State Chem. 1986;65:231.CrossrefGoogle Scholar

  • [55]

    Imanaka N, Tamura S, Nunotani N. Multivalence cation conductors. Encycl Appl Electrochem. 2014;1334–9.Google Scholar

  • [56]

    Neiman AY, Pestereva N, Zhou Y, Nechaev D, Koteneva E, Vanec K, et al. The nature and the mechanism of ion transfer in tungstates Me2+WO4(Ca, Sr, Ba) and Me3+2WO3(Al, Sc, In) according to the data acquired by the tubandt method. Russ J Electrochem. 2013;49:895.CrossrefGoogle Scholar

  • [57]

    Nestler T, Fedotov S, Leisegang T, Meyer DC. Towards Al3+ mobility in crystalline solids: critical review and analysis. Crit Rev Solid State Mater Sci. 2018.Google Scholar

  • [58]

    Hayashi A, Ohtomo T, Mizuno F, Tadanaga M, Tatsumisago K. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem Commun. 2003;5:701.CrossrefGoogle Scholar

  • [59]

    Machida N, Kobayashi K, Nishikawa Y, Shigematsu T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics. 2004;175:247.CrossrefGoogle Scholar

  • [60]

    Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sour. 2008;183:422.CrossrefGoogle Scholar

  • [61]

    Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem. 2011;21:17147.CrossrefGoogle Scholar

  • [62]

    Mori R. A new structured aluminium–air secondary battery with a ceramic aluminium ion conductor. RSC Adv. 2013:3:11547.CrossrefGoogle Scholar

  • [63]

    Shimonishi Y, Zhang T, Imanishi N, Im D, Lee DJ, Hirano A, et al. A study on lithium/air secondary batteriesstability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sour. 2011;196:5128.CrossrefGoogle Scholar

  • [64]

    Technology and market forecast of separators for rechargeable lithium ion batteries (2009–2014). Bundang-gu, Seongnam-si, Korea: Solar & Energy Co., Ltd, 2010.Google Scholar

  • [65]

    Kim H, Ding Y, Kohl PA. LiSICON–ionic liquid electrolyte for lithium ion battery. J Power Sour. 2012;198:281.CrossrefGoogle Scholar

  • [66]

    Gao J, Chu G, He M, Zhang S, Xiao R, Li H, et al. Screening possible solid electrolytes by calculating the conduction pathways using bond valence method. Sci China Phys Mech Astron. 2014;57:1526.CrossrefGoogle Scholar

  • [67]

    Barber MN, Ninham BW. Random and restricted walks: theory and applications, volume 10. New York: CRC Press, 1970.Google Scholar

  • [68]

    Koiwa M, Ishioka S. Random walk properties of lattices and correlation factors for diffusion via the vacancy mechanism in crystals. J Stat Phys 1983;30:477.CrossrefGoogle Scholar

  • [69]

    Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, volume 155. Berlin, Heidelberg, Germany: Springer Science & Business Media, 2007.Google Scholar

  • [70]

    Almond D, Duncan G, West A. The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics. 1983;8:159.CrossrefGoogle Scholar

  • [71]

    Balluffi RW, Allen S, Carter WC. Kinetics of materials. Hoboken, USA: John Wiley & Sons, 2005.Google Scholar

  • [72]

    Xie H, Alonso JA, Li Y, Fernandez-Diaz MT, Goodenough JB. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem Mater. 2011;23:3587.CrossrefGoogle Scholar

  • [73]

    Xu M, Park MS, Lee JM, Kim TY, Park YS, Ma E. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M= Te, Nb, Zr). Phys Rev B. 2012;85:052301.CrossrefGoogle Scholar

  • [74]

    Whiteley JM, Woo JH, Hu E, Nam KW, Lee SH. Empowering the lithium metal battery through a silicon-based superionic conductor. J Electrochem Soc. 2014;161:A1812.CrossrefGoogle Scholar

  • [75]

    Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026.CrossrefPubMedGoogle Scholar

  • [76]

    Sata N, Eberman K, Eberl K, Maier J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature. 2000;408:946.PubMedCrossrefGoogle Scholar

  • [77]

    Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 2005;4:805.CrossrefPubMedGoogle Scholar

  • [78]

    Pennycook TJ, Beck MJ, Varga K, Varela M, Pennycook SJ, Pantelides ST. Origin of colossal ionic conductivity in oxide multilayers: interface induced sublattice disorder. Phys Rev Lett. 2010;104:115901.PubMedCrossrefGoogle Scholar

  • [79]

    Adams S. Ultrafast lithium migration in surface modified LiFePO4 by heterogeneous doping. Appl Energy. 2012;90:323.CrossrefGoogle Scholar

  • [80]

    Adepalli KK, Kelsch M, Merkle R, Maier J. Enhanced ionic conductivity in polycrystalline TiO2 by one-dimensional doping. Phys Chem Chem Phys. 2014;16:4942.CrossrefPubMedGoogle Scholar

  • [81]

    Armstrong R, Bulmer R, Dickinson T. Fast ion transport in solids. Amsterdam: North Holland Publishing, 1973.Google Scholar

  • [82]

    Goodenough J, Hong HP, Kafalas J. Fast Na+-ion transport in skeleton structures. Mater Res Bull. 1976;11:203.CrossrefGoogle Scholar

  • [83]

    Adachi G, Imanaka N, Aono H. Fast Li+ conducting ceramic electrolytes. Adv Mater. 1996;8:127.CrossrefGoogle Scholar

  • [84]

    Levi E, Levi M, Chasid O, Aurbach D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J Electroceram. 2009;22:13.CrossrefGoogle Scholar

  • [85]

    Adams S, Rao RP. Structural requirements for fast lithium ion migration in Li10GeP2S12. J Mater Chem. 2012;22:7687.CrossrefGoogle Scholar

  • [86]

    Guin M, Tietz F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries. J Power Sour. 2015;273:1056.CrossrefGoogle Scholar

  • [87]

    Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016.CrossrefGoogle Scholar

  • [88]

    Meutzner F, Münchgesang W, Leisegang T, Schmid R, Zschornak M, Ureña de Vivanco M, et al. Identification of solid oxygen-containing Na-electrolytes: an assessment based on crystallographic and economic parameters. Cryst Res Technol. 2017;52:1.Google Scholar

  • [89]

    Shannon RT. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Cryst Phys Diffr Theor Gen Crystallogr. 1976;32:751.CrossrefGoogle Scholar

  • [90]

    Liu S, Hu J, Yan N, Pan G, Li G, Gao X. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ Sci. 2012;5:9743.CrossrefGoogle Scholar

  • [91]

    Geng L, Lv G, Xing X, Guo J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater. 2015;27:4926.CrossrefGoogle Scholar

  • [92]

    Meutzner F, Nestler T, Zschornak M, Canepa P, Gautam GS, Leoni S, et al. Theoretical methods for battery material identification and analysis in electrochemical storage materials: from crystallography to manufacturing technology. Berlin: De Gruyter Oldenbourg Publishing House, 2018.Google Scholar

  • [93]

    Imanaka N, Kobayashi Y, Adachi GY. A direct evidence for trivalent ion conduction in solids. Chem Lett. 1995;24:433.CrossrefGoogle Scholar

  • [94]

    Imanaka N, Tamura S. Development of multivalent ion conducting solid electrolytes. Bull Chem Soc Jpn. 2011;84:353.CrossrefGoogle Scholar

  • [95]

    Driscoll DJ, Islam MS, Slater PR. Simulation and conductivity studies of defects and ion transport in Sc2(WO4)3. Solid State Ionics. 2005;176;539.Google Scholar

  • [96]

    Adams S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics. 2006;177:1625.CrossrefGoogle Scholar

  • [97]

    Zhou Y, Adams S, Rao RP, Edwards DD, Neiman A, Pestereva N. Charge transport by polyatomic anion diffusion in Sc2(WO4)3. Chem Mater. 2008;20:6335.CrossrefGoogle Scholar

  • [98]

    Zhou Y, Rao RP, Adams S. Mechanism of defect formation and polyanion transport in solid scandium tungstate type oxides. Monatshefte für Chemie-Chem Mon. 2009;140:1017.Google Scholar

  • [99]

    Zhou Y, Rao RP, Adams S. Intrinsic polyatomic defects in Sc2(WO4)3. Solid State Ionics. 2011;192:34.CrossrefGoogle Scholar

  • [100]

    Zhou Y, Neiman A, Adams S. Novel polyanion conduction in Sc2(WO4)3 type negative thermal expansion oxides. Phys Status Solidi (b). 2011;248:130.CrossrefGoogle Scholar

  • [101]

    Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv Energy Mater. 2014;4:9.Google Scholar

  • [102]

    Takada K, Ohta N, Tateyama Y. Recent progress in interfacial nanoarchitectonics in solid-state batteries. J Inorg Organomet Polym Mater. 2015;25:205.CrossrefGoogle Scholar

  • [103]

    Lepley N, Holzwarth N. Modeling interfaces between solids: application to Li battery materials. Phys Rev B. 2015;92:214201.CrossrefGoogle Scholar

  • [104]

    Takada K, Ohno T. Experimental and computational approaches to interfacial resistance in solid-state batteries. Front Energy Res. 2016;4:10.Google Scholar

  • [105]

    Wenzel S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl Mater Interface. 2016.Google Scholar

  • [106]

    Aurbach D. The role of surface films on electrodes in Li-ion batteries. In: Advances in Lithium-ion batteries. New York: Springer, 2002: 7–77.Google Scholar

  • [107]

    Zhang JG, Xu W, Henderson WA. Lithium metal anodes and rechargeable lithium metal batteries. Switzerland: Springer, 2017.Google Scholar

  • [108]

    Guo X, Maier J. Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc. 2001;148:E121.Google Scholar

  • [109]

    Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci. 2006;51:151.CrossrefGoogle Scholar

  • [110]

    Guo X, Sigle W, Fleig J, Maier J. Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ionics. 2002;154:555.Google Scholar

  • [111]

    Uvarov N. Surface disordering of classic and superionic crystals: a description in the framework of the Stern model. Russ J Electrochem. 2007;43:368.CrossrefGoogle Scholar

  • [112]

    Uvarov N. Estimation of the surface potential in superionic oxide conductors using the Stern model. Solid State Ionics. 2008;179:783.CrossrefGoogle Scholar

  • [113]

    Wagner J, Jr. Composite materials as solid electrolytes. In: Solid state batteries. Dordrecht, Netherlands: Springer, 1985: 77–90.Google Scholar

  • [114]

    Maier J. Ionic conduction in space charge regions. Prog Solid State Chem. 1995;23:171.CrossrefGoogle Scholar

  • [115]

    Uvarov N. Composite solid electrolytes: recent advances and design strategies. J Solid State Electrochem. 2011;15:367.CrossrefGoogle Scholar

  • [116]

    Liang C, Joshi A, Hamilton N. Solid-state storage batteries. J Appl Electrochem. 1978;8:445.CrossrefGoogle Scholar

  • [117]

    Crompton TP. Battery reference book. Oxford, Great Britain: Newnes, 2000. eBook ISBN: 9780080499956.Google Scholar

  • [118]

    Uvarov N. Estimation of composites conductivity using a general mixing rule. Solid State Ionics. 2000;136:1267.Google Scholar

  • [119]

    Uvarov NF. Estimation of electrical properties of composite solid electrolytes of different morphologies. Solid State Ionics. 2017;302:19.CrossrefGoogle Scholar

  • [120]

    Konisheva E, Neiman A, Gorbunova E.. Transport processes and surface transformation at the CaWO4|WO3 interface. Solid State Ionics. 2003;157:45.CrossrefGoogle Scholar

  • [121]

    Neiman AY, Pestereva N, Sharafutdinov A, Kostikov YP. Conduction and transport numbers in metacomposites MeWO 4£ WO 3 (Me= Ca, Sr, Ba). Russ J Electrochem. 2005;41:598.CrossrefGoogle Scholar

  • [122]

    Neiman AY, Uvarov N, Pestereva N. Solid state surface and interface spreading: an experimental study. Solid State Ionics. 2007;177:3361.CrossrefGoogle Scholar

  • [123]

    Uvarov N. Phenomenological description of transport properties of three-phase composites. Russ J Electrochem. 2017;53:700.CrossrefGoogle Scholar

  • [124]

    Ulihin A, Mateyshina YG, Uvarov N. All-solid-state asymmetric supercapacitors with solid composite electrolytes. Solid State Ionics. 2013;251:62.CrossrefGoogle Scholar

  • [125]

    Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013.CrossrefGoogle Scholar

  • [126]

    Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta. 2012;76:270.CrossrefGoogle Scholar

  • [127]

    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, et al. Prototype systems for rechargeable magnesium batteries. Nature. 2000;407:724.CrossrefPubMedGoogle Scholar

  • [128]

    Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, et al. Progress in rechargeable magnesium battery technology. Adv Mater. 2007;19:4260.CrossrefGoogle Scholar

  • [129]

    Chusid O, Gofer Y, Gizbar H, Vestfrid Y, Levi E, Aurbach D, et al. Solid-state rechargeable magnesium batteries. Adv Mater. 2003;15:627.CrossrefGoogle Scholar

  • [130]

    Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev. 2017;117:4287.CrossrefPubMedGoogle Scholar

  • [131]

    Muldoon J, Bucur CB, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev. 2014;114:11683.PubMedCrossrefGoogle Scholar

  • [132]

    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. Mg rechargeable batteries: an on-going challenge. Energy Environ Sci. 2013;6:2265.CrossrefGoogle Scholar

  • [133]

    Ikeda S, Takahashi M, Ishikawa J, Ito K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in MgZrPO4 system. Solid State Ionics. 1987;23:125.CrossrefGoogle Scholar

  • [134]

    Imanaka N, Okazaki Y, Adachi GY. Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites. J Mater Chem. 2000;10:1431.CrossrefGoogle Scholar

  • [135]

    Imanaka N, Okazaki Y, Adachi G. Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes. Ionics. 2001;7:440.CrossrefGoogle Scholar

  • [136]

    Mielewczyk A, Molin S, Gdula K, Jasiński G, Kusz B, Jasiński P, et al. Structure and electric properties of double magnesium zirconium orthophosphate. Mater Ceram. 2010;62:477.Google Scholar

  • [137]

    Gobechiya E, Sukhanov M, Petkov V, Kabalov YK. Crystal structure of the double magnesium zirconium orthophosphate at temperatures of 298 and 1023 K. Crystallogr Rep. 2008;53:53.CrossrefGoogle Scholar

  • [138]

    Takada K. Solid electrolytes and solid-state batteries. In: AIP Conference Proceedings, volume 1765. AIP Publishing, 2016: 020008.Google Scholar

  • [139]

    Mohtadi R, Mizuno F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotechnol. 2014;5:1291.PubMedCrossrefGoogle Scholar

  • [140]

    Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy. 2015;12:750.CrossrefGoogle Scholar

  • [141]

    Mohtadi R, Matsui M, Arthur TS, Hwang SJ. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed. 2012;51:9780.CrossrefGoogle Scholar

  • [142]

    Lu Z, Ciucci F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem Mater. 2017;29:9308.CrossrefGoogle Scholar

  • [143]

    Ikeshoji T, Tsuchida E, Takagi S, Matsuo M, Orimo SI. Magnesium ion dynamics in Mg(BH4)2 (1- x)X2x (X= Cl or AlH4) from first-principles molecular dynamics simulations. RSC Adv. 2014;4:1366.CrossrefGoogle Scholar

  • [144]

    Higashi S, Miwa K, Aoki M, Takechi K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem Commun. 2014;50:1320.CrossrefGoogle Scholar

  • [145]

    Roedern E, Kühnel RS, Remhof A, Battaglia C. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Sci Rep. 2017;7.Google Scholar

  • [146]

    Chen J, Chua YS, Wu H, Xiong Z, He T, Zhou W, et al. Synthesis, structures and dehydrogenation of magnesium borohydride–ethylenediamine composites. Int J Hydrogen Energy. 2015;40:412.CrossrefGoogle Scholar

  • [147]

    Lide D. CRC handbook of chemistry and physics, 88th Ed. Boca Raton: CRC Press, 2007.Google Scholar

  • [148]

    Giorgini MG, Pelletti MR, Paliani G, Cataliotti RS. Vibrational spectra and assignments of ethylene-diamine and its deuterated derivatives. J Raman Spectrosc. 1983;14:16.CrossrefGoogle Scholar

  • [149]

    Iwamoto T, Shriver DF. Vibrational spectra of catena-µ-Ethylenediamine complexes of Zinc(II), Cadmium(II), and Mercury(II) with the formula M(en)X2. Inorg Chem. 1971;10:2428.CrossrefGoogle Scholar

  • [150]

    Allen A, Senoff C. Infrared spectra of tris-ethylenediamine complexes of Ruthenium(II). Can J Chem. 1965;43:888.CrossrefGoogle Scholar

  • [151]

    Bennett AM, Foulds GA, Thornton DA, Watkins GM. The infrared spectra of ethylenediamine complexesII. Tris-, bis-and mono (ethylenediamine) complexes of metal(II) halides. Spectrochim Acta Part A: Mol Spectrosc. 1990;46:13.Google Scholar

  • [152]

    Skripov AV, Soloninin AV, Ley MB, Jensen TR, Filinchuk Y. Nuclear magnetic resonance studies of BH4 reorientations and Li diffusion in LiLa(BH4)3Cl. J Phys Chem C. 2013;117:14965.CrossrefGoogle Scholar

  • [153]

    Hansen BR, Paskevicius M, Li HW, Akiba E, Jensen TR. Metal boranes: progress and applications. Coord Chem Rev. 2016;323:60.CrossrefGoogle Scholar

  • [154]

    Mannhart J, Schlom DG. Oxide–Tausendsassas für die Elektronik. Phys J. 2005;4:45.Google Scholar

  • [155]

    Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sour. 2010;195:2431.CrossrefGoogle Scholar

  • [156]

    Tucker MC. Progress in metal-supported solid oxide fuel cells: a review. J Power Sour. 2010;195:4570.CrossrefGoogle Scholar

  • [157]

    Kraytsberg A, Ein Eli Y. Higher, stronger, better: a review of 5 V cathode materials for advanced Lithium-ion batteries. Adv Energy Mater. 2012;2:922.CrossrefGoogle Scholar

  • [158]

    Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, et al. Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy. 2009;34:4889.CrossrefGoogle Scholar

  • [159]

    Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172.PubMedCrossrefGoogle Scholar

  • [160]

    Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, et al. Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sour. 2014;267:700.CrossrefGoogle Scholar

  • [161]

    Valov I, Linn E, Tappertzhofen S, Schmelzer J, Van den Hurk S, Lentz F, et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat Commun. 2013;4:1771.CrossrefPubMedGoogle Scholar

  • [162]

    Hanzig J, Zschornak M, Hanzig F, Mehner E, Stöcker H, Abendroth B, et al. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature. Phys Rev B. 2013;88:024104.CrossrefGoogle Scholar

  • [163]

    Hanzig J, Mehner S, Jachalke E, Hanzig F, Zschornak M, Richter C, et al. Dielectric to pyroelectric phase transition induced by defect migration. J Phys. 2015;17:023036.Google Scholar

  • [164]

    Kröger F. A., Vink H. J. Solid-State Physics. In F. Seitz and D. Turnbull (eds). New York: Academic Press Inc. 1956;3:307.CrossrefGoogle Scholar

  • [165]

    Waser R, Dittmann R, Staikov G, Szot K. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv Mater. 2009;21:2632.CrossrefGoogle Scholar

  • [166]

    Blanc J, Staebler DL. Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals. Phys Rev B. 1971;4:3548.CrossrefGoogle Scholar

  • [167]

    Mohapatra SK, Wagner S. Electrochromism in nickel-doped strontium titanate. J Appl Phys. 1979;50:5001.CrossrefGoogle Scholar

  • [168]

    Hanzig J, Zschornak M, Mehner E, Hanzig F, Münchgesang W, et al. The anisotropy of oxygen vacancy migration in SrTiO3. J Phys: Condens Matter. 2016;28:225001.PubMedGoogle Scholar

  • [169]

    Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303.CrossrefPubMedGoogle Scholar

  • [170]

    Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114:11503.CrossrefPubMedGoogle Scholar

  • [171]

    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8:621.PubMedCrossrefGoogle Scholar

  • [172]

    Sakaebe H, Matsumoto H, Tatsumi K. Application of room temperature ionic liquids to Li batteries. Electrochim Acta. 2007;53:1048.CrossrefGoogle Scholar

  • [173]

    Balducci A, Dugas R, Taberna P, Simon P, Plée D, Mastragostino M, et al. High temperature carboncarbon supercapacitor using ionic liquid as electrolyte. J Power Sour. 2007;165:922.CrossrefGoogle Scholar

  • [174]

    Brandt A, Balducci A. Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors. J Power Sour. 2014;250:343.CrossrefGoogle Scholar

  • [175]

    Appetecchi GB, Montanino M, Passerini S. Ionic liquid-based electrolytes for high energy, safer Lithium batteries. In: ACS Symposium Series, volume 1117. ACS Publications, 2012: 67–128.Google Scholar

  • [176]

    Eshetu GG, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions. ChemSusChem. 2016;9:462.CrossrefPubMedGoogle Scholar

  • [177]

    Chen Y, Zhang X, Zhang D, Yu P, Ma Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon. 2011;49:573.CrossrefGoogle Scholar

  • [178]

    Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sour. 2010;195:2118.CrossrefGoogle Scholar

  • [179]

    Pettersson F, Keskinen J, Remonen T, von Hertzen L, Jansson E, Tappura K, et al. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper. J Power Sour. 2014;271:298.CrossrefGoogle Scholar

  • [180]

    Yamamoto T, Nohira T, Hagiwara R, Fukunaga A, Sakai S, Nitta K, et al. Chargedischarge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amidepotassium bis(fluorosulfonyl)amide. J Power Sour. 2012;217:479.CrossrefGoogle Scholar

  • [181]

    Hasa I, Passerini S, Hassoun J. Characteristics of an ionic liquid electrolyte for sodium-ion batteries. J Power Sour. 2016;303:203.CrossrefGoogle Scholar

  • [182]

    Monti D, Jónsson E, Palacín MR, Johansson P. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J Power Sour. 2014;245:630.CrossrefGoogle Scholar

  • [183]

    Menne S, Schroeder M, Vogl T, Balducci A. Carbonaceous anodes for lithium-ion batteries in combination with protic ionic liquids-based electrolytes. J Power Sour. 2014;266:208.CrossrefGoogle Scholar

  • [184]

    Menne S, Vogl T, Balducci A. The synthesis and electrochemical characterization of bis(fluorosulfonyl)imide-based protic ionic liquids. Chem Commun. 2015;51:3656.CrossrefGoogle Scholar

  • [185]

    Reale P, Fernicola A, Scrosati B. Compatibility of the Py24TFSILiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sour. 2009;194:182.CrossrefGoogle Scholar

  • [186]

    Montanino M, Moreno M, Carewska M, Maresca G, Simonetti E, Lo Presti R, et al. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. J Power Sour. 2014;269:608.CrossrefGoogle Scholar

  • [187]

    Elia GA, Bernhard R, Hassoun J. A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid. RSC Adv. 2015;5:21360.CrossrefGoogle Scholar

  • [188]

    Agostini M, Ulissi U, Di Lecce D, Ahiara Y, Ito S, Hassoun J, et al. A Lithium-ion battery based on an Ionic liquid electrolyte, Tin-Carbon nanostructured anode, and Li2O-ZrO2 -coated Li[Ni0.8Co0.15Al0.05]O2 Cathode. Energy Technol. 2015;3:632.CrossrefGoogle Scholar

  • [189]

    Di Lecce D, Brutti S, Panero S, Hassoun J. A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Mater Lett. 2015;139:329.Google Scholar

  • [190]

    Nádherná M, Reiter J, Moškon J, Dominko R. Lithium bis(fluorosulfonyl)imidePYR14TFSI ionic liquid electrolyte compatible with graphite. J Power Sour. 2011;196:7700.CrossrefGoogle Scholar

  • [191]

    Reiter J, Nádherná M, Dominko R. Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J Power Sour. 2012;205:402.CrossrefGoogle Scholar

  • [192]

    Chagas LG, Buchholz D, Wu L, Vortmann B, Passerini S. Unexpected performance of layered sodium-ion cathode material inionic liquid-based electrolyte. J Power Sour. 2014;247:377.CrossrefGoogle Scholar

  • [193]

    Kim JK, Mueller F, Kim H, Jeong S, Park JS, Passerini S, et al. Eco-friendly energy storage system: seawater and Ionic Liquid electrolyte. ChemSusChem. 2016;9:42.PubMedCrossrefGoogle Scholar

  • [194]

    Wang P, Zakeeruddin SM, Comte P, Exnar I, Grätzel M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc. 2003;125:1166.PubMedCrossrefGoogle Scholar

  • [195]

    Galiński M, Lewandowski A, Stȩpniak I. Ionic liquids as electrolytes. Electrochim Acta. 2006;51:5567.CrossrefGoogle Scholar

  • [196]

    Xue L, Padgett CW, DesMarteau DD, Pennington WT. Synthesis and structures of alkali metal salts of bis [(trifluoromethyl) sulfonyl] imide. Solid State Sci. 2002;4:1535.CrossrefGoogle Scholar

  • [197]

    Zhou Q, Boyle PD, Malpezzi L, Mele A, Shin JH, Passerini S, et al. Phase behavior of Ionic LiquidLiX mixtures: Pyrrolidinium cations and TFSI anions linking structure to transport properties. Chem Mater. 2011;23:4331.CrossrefGoogle Scholar

  • [198]

    Eftekhari A, Liu Y, Chen P. Different roles of ionic liquids in lithium batteries. J Power Sour. 2016;334:221.CrossrefGoogle Scholar

  • [199]

    Bhatt AI, May I, Volkovich VA, Hetherington ME, Lewin B, Thied RC, et al. Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes. J Chem Soc Dalton Trans. 2002;24:4532.Google Scholar

  • [200]

    Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis (trifluoromethylsulfonyl) imide. Chem Lett. 2000;29:922.CrossrefGoogle Scholar

  • [201]

    Kim JK, Matic A, Ahn JH, Jacobsson P. An imidazolium based ionic liquid electrolyte for lithium batteries. J Power Sour. 2010;195:7639.CrossrefGoogle Scholar

  • [202]

    Seki S, Ohno Y, Kobayashi Y, Miyashiro H, Usami A, Mita Y, et al. Imidazolium-based room-temperature Ionic liquid for Lithium secondary batteries. J Electrochem Soc. 2007;154:A173.CrossrefGoogle Scholar

  • [203]

    Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, et al. Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B. 2006;110:10228.CrossrefPubMedGoogle Scholar

  • [204]

    Yim T, Lee HY, Kim HJ, Mun J, Kim S, Oh SM, et al. Synthesis and properties of pyrrolidinium and piperidinium bis (trifluoromethanesulfonyl) imide ionic liquids with allyl substituents. Bull Korean Chem Soc. 2007;28:1567.CrossrefGoogle Scholar

  • [205]

    Fang S, Yang L, Wei C, Peng C, Tachibana K, Kamijima K. Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem Commun. 2007;9:2696.CrossrefGoogle Scholar

  • [206]

    Ye H, Huang J, Xu JJ, Khalfan A, Greenbaum SG. Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends. J Electrochem Soc. 2007;154:A1048.CrossrefPubMedGoogle Scholar

  • [207]

    Tsunashima K, Yonekawa F, Sugiya M. Lithium secondary batteries using a Lithium Nickelate-based cathode and phosphonium ionic liquid electrolytes. Electrochem Solid-State Lett. 2009;12:A54.CrossrefGoogle Scholar

  • [208]

    Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun. 1992;13:965.Google Scholar

  • [209]

    Henderson WA, Passerini S. Phase behavior of ionic liquid LiX mixtures: Pyrrolidinium cations and TFSI - anions. Chem Mater. 2004;16:2881.CrossrefGoogle Scholar

  • [210]

    Elia GGA, Ulissi U, Mueller F, Reiter J, Tsiouvaras N, Sun YK, et al. A Long-life lithium ion battery with enhanced electrode/electrolyte interface by using an ionic liquid solution. Chem Eur J. 2016;22:6808.CrossrefGoogle Scholar

  • [211]

    Appel R, Becke-Goehring M, Eisenhauer G, Hartenstein J. Imidobisschwefelsäurechlorid. Chem Ber. 1962;95:625.CrossrefGoogle Scholar

  • [212]

    Michot C, Armand M, Sanchez JY, Choquette Y, Gauthier M. Materiau a conduction ionique presentant de bonnes proprietes anti-corrosion, 1995.Google Scholar

  • [213]

    Elia GA, Ulissi U, Jeong S, Passerini S, Hassoun J. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ Sci. 2016;9:3210.CrossrefGoogle Scholar

  • [214]

    Piper DM, Evans T, Leung K, Watkins T, Olson J, Kim SC, et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nat Commun. 2015;6:6230.CrossrefPubMedGoogle Scholar

  • [215]

    Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19.PubMedCrossrefGoogle Scholar

  • [216]

    Tarascon JM. Is lithium the new gold? Nat Chem. 2010;2:510.PubMedCrossrefGoogle Scholar

  • [217]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636.CrossrefPubMedGoogle Scholar

  • [218]

    Nithya C, Gopukumar S. Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev: Energy Environ. 2015;4:253.Google Scholar

  • [219]

    Hasa I, Buchholz D, Passerini S, Hassoun J. A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. ACS Appl Mater Interface. 2015;7:5206.CrossrefGoogle Scholar

  • [220]

    Hasa I, Passerini S, Hassoun J. A rechargeable sodium-ion battery using a nanostructured SbC anode and P2-type layered [Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015;5:48928.CrossrefGoogle Scholar

  • [221]

    Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science (New York, N.Y.) 2011;334:928.PubMedCrossrefGoogle Scholar

  • [222]

    Zhao Q, Hu Y, Zhang K, Chen J. Potassium sulfur batteries: a new member of room-temperature rechargeable metal sulfur batteries. Inorg Chem. 2014;53:9000.CrossrefPubMedGoogle Scholar

  • [223]

    Ren X, Wu Y. A low-overpotential potassium oxygen battery based on potassium superoxide. J Am Chem Soc. 2013;135:2923.CrossrefPubMedGoogle Scholar

  • [224]

    Ponrouch A, Frontera C, Bardé F, Palacín MR. Towards a calcium-based rechargeable battery. Nat Mater. 2015;15:169.PubMedGoogle Scholar

  • [225]

    See KA, Gerbec JA, Jun YSS, Wudl F, Stucky GD, Seshadri R. A high capacity calcium primary cell based on the Ca-S system. Adv Energy Mater. 2013;3:1056.CrossrefGoogle Scholar

  • [226]

    Aurbach D, Gizbar H, Schechter A, Chusid O, Gottlieb HE, Gofer Y, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc. 2002;149:A115.CrossrefGoogle Scholar

  • [227]

    Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520:325.PubMedGoogle Scholar

  • [228]

    Sun H, Wang W, Yu Z, Yuan Y, Wang S, Jiao S. A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun. 2015;51:11892.CrossrefGoogle Scholar

  • [229]

    Shkolnikov E, Zhuk A, Vlaskin M. Aluminum as energy carrier: feasibility analysis and current technologies overview. Renewable Sustainable Energy Rev. 2011;15:4611.CrossrefGoogle Scholar

  • [230]

    Li Q, Bjerrum NJ. Aluminum as anode for energy storage and conversion: a review. J Power Sour. 2002;110:1.CrossrefGoogle Scholar

  • [231]

    U.S. Geological Survey. Mineral commodity summaries 2015: U.S. Geological Survey. 2015:196. http://dx.doi.org/10.3133/70140094

  • [232]

    Fleischer M. Recent estimates of the abundances of the elements in this earth’s crust. Geol Surv Circ. 1953;285.Google Scholar

  • [233]

    MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, et al. Energy applications of ionic liquids. Energy Environ Sci. 2014;7:232.CrossrefGoogle Scholar

  • [234]

    Otaegui L, Goikolea E, Aguesse F, Armand M, Rojo T, Singh G. Effect of the electrolytic solvent and temperature on aluminium current collector stability: a case of sodium-ion battery cathode. J Power Sour. 2015;297:168.CrossrefGoogle Scholar

  • [235]

    Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci. 2014;66:1.CrossrefGoogle Scholar

  • [236]

    Giffin GA. Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J Mater Chem A. 2016;4:13378.CrossrefGoogle Scholar

  • [237]

    Watkins T, Kumar A, Buttry DA. Designer ionic liquids for reversible electrochemical deposition/dissolution of magnesium. J Am Chem Soc. 2016;138:641.CrossrefPubMedGoogle Scholar

  • [238]

    Kamath G, Narayanan B, Sankaranarayanan SKRS. Atomistic origin of superior performance of ionic liquid electrolytes for Al-ion batteries. Phys Chem Chem Phys. 2014;16:20387.CrossrefPubMedGoogle Scholar

  • [239]

    Gifford PR. A substituted imidazolium chloroaluminate molten salt possessing an increased electrochemical window. J Electrochem Soc. 1987;134:610.CrossrefGoogle Scholar

  • [240]

    Zheng Y, Dong K, Wang Q, Zhang J, Lu X. Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J Chem Eng Data. 2013;58:32.CrossrefGoogle Scholar

  • [241]

    Lang CM, Kim K, Guerra L, Kohl PA. Cation electrochemical stability in chloroaluminate ionic liquids. J Phys Chem B. 2005;109:19454.CrossrefPubMedGoogle Scholar

  • [242]

    Melton TJ, Joyce J, Maloy JT, Boon JA, Wilkes JS. Electrochemical studies of sodium chloride as a lewis buffer for room temperature chloroaluminate molten salts. J Electrochem Soc. 1990;137:3865.CrossrefGoogle Scholar

  • [243]

    Vestergaard B, Bjerrum NJ, Petrushina I, Hjuler HA, Berg RW, Begtrup M. Molten triazolium chloride systems as new aluminum battery electrolytes. J Electrochem Soc. 1993;140:3108.CrossrefGoogle Scholar

  • [244]

    Fannin AA, King LA, Levisky JA, Wilkes JS. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 1. Ion interactions by nuclear magnetic resonance spectroscopy. J Phys Chem. 1984;88:2609.Google Scholar

  • [245]

    Wilkes JS, Levisky JA, Wilson RA, Hussey CL. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem. 1982;21:1263.CrossrefGoogle Scholar

  • [246]

    Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, et al. Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interface. 2015;7:80.CrossrefGoogle Scholar

  • [247]

    Jiang T, Chollier Brym M, Dubé G, Lasia A, Brisard G. Electrodeposition of aluminium from ionic liquids: part Ielectrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol. 2006;201:1.CrossrefGoogle Scholar

  • [248]

    Jiang T, Brym MC, Dubé G, Lasia A, Brisard G. Electrodeposition of aluminium from ionic liquids: Part II-studies on the electrodeposition of aluminum from aluminum chloride (AICl3])-trimethylphenylammonium chloride (TMPAC) ionic liquids. Surf Coat Technol. 2006;201:10.CrossrefGoogle Scholar

  • [249]

    Gale RJ, Osteryoung RA. Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorg Chem. 1979;18:1603.CrossrefGoogle Scholar

  • [250]

    Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, et al. An overview and future perspectives of aluminum batteries. Adv Mater. 2016;28:7564.CrossrefPubMedGoogle Scholar

  • [251]

    Xu M, Ivey D, Qu W, Xie Z. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J Power Sour. 2015;274:1249.CrossrefGoogle Scholar

About the article

Published Online: 2018-10-13


TN, JH, and MdV are grateful for financial support of the Federal Ministry of Education and Research (CryPhysConcept (03EK3029A) and R2RBattery (03SF0542A)). Furthermore, ER thanks the Swiss National Science Foundation for financial support within the Sinergia project ‘Novel ionic conductors’ (CRSII2_160749/1).


Citation Information: Physical Sciences Reviews, Volume 4, Issue 4, 20170115, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0115.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in