Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

UV-Vis spectroscopy

Marcello Picollo
  • Corresponding author
  • Istituto di Fisica Applicata “Nello Carrara” del Consiglio Nazionale delle Ricerche, Via Madonna del piano 10, 50019 Sesto Fiorentino, Firenze, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maurizio Aceto
  • Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università degli Studi del Piemonte Orientale, viale Teresa Michel, 11, 15121 Alessandria, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tatiana Vitorino
  • Istituto di Fisica Applicata “Nello Carrara” del Consiglio Nazionale delle Ricerche, Via Madonna del piano 10, 50019 Sesto Fiorentino, Firenze, Italy
  • Department of Conservation and Restoration and LAQV-REQUIMTE, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-14 | DOI: https://doi.org/10.1515/psr-2018-0008


UV-Vis reflectance spectroscopy has been widely used as a non-invasive method for the study of cultural heritage materials for several decades. In particular, FORS, introduced in the 1980s, allows to acquire hundreds of reflectance spectra in situ in a short time, contributing to the identification of artist’s materials. More recently, microspectrofluorimetry has also been proposed as a powerful non-invasive method for the identification of dyes and lake pigments that provides high sensitivity and selectivity. In this chapter, the concepts behind these spectroscopic methodologies will be discussed, as well as the instrumentation and measurement modes used. Case studies related with different cultural heritage materials (paintings and manuscripts, textiles, carpets and tapestries, glass, metals, and minerals), which show the usefulness of UV-Vis reflectance spectroscopy and microspectrofluorimetry applied to the study of artworks, will also be presented.

Keywords: non-invasive; UV-Vis spectroscopy; reflectance; FORS; microspectrofluorimetry; paintings and manuscripts; textiles; carpets and tapestries; glass; metals; minerals


  • [1]

    Taft WS, Mayer JW. The science of paintings. New York: Springer-Verlag, 2000.Google Scholar

  • [2]

    Pinna D, Galeotti M, Mazzeo R, editors. Practical handbook on diagnosis of paintings on movable support, European project ARTECH. Firenze: Centro Di, 2009.Google Scholar

  • [3]

    Gauglitz G. Ultraviolet and visible spectroscopy. In: Gunzler H, Williams A, editors. Handbook of analytical techniques. Vol. 1. Weinheim: Wiley-VCH, 2001.Google Scholar

  • [4]

    Rawlins FI. Studies in the colorimetry of paintings: a note in conclusion. Tech Stud Field Fine Arts. 1942;10:230–31.Google Scholar

  • [5]

    Barnes NF. A spectrophotometric study of artists’ pigments. Tech Stud Field Fine Arts. 1939;7:120–30.Google Scholar

  • [6]

    Santini M. Applicazione del metodo spettrofotometrico nella determinazione colorimetrica sui dipinti. Boll dell’Istituto Centrale del Restauro. 1959;23/24:95–129.Google Scholar

  • [7]

    Duncan DR. The identification and estimation of pigments in pigmented compositions by reflectance spectrophotometry. J Oil Colours Chem Assoc. 1962;45:300–24.Google Scholar

  • [8]

    Bullock L. Reflectance spectrophotometry for measurement of colour change. Natl Gallery Tech Bull. 1978;2:49–55.Google Scholar

  • [9]

    Cazenobe I, Bacci M, Picollo M, Radicati B, Bacci G, Conti S, et al. Non-destructive spectroscopic investigations of dyed textiles: an application to yellow dyed wool samples. In: Preprints of the 13th triennial ICOM meeting. Rio de Janeiro, ICOM Committee for Conservation, and Roy Vontobel Eds. London : James & James. 2002: 238–44.Google Scholar

  • [10]

    Dupuis G, Elias M, Simonot L. Pigment identification by fiber-optics diffuse reflectance spectroscopy. Appl Spectrosc. 2002;56:1329–36.CrossrefGoogle Scholar

  • [11]

    Leona M, Winter J. Fibre optics reflectance spectroscopy: a unique tool for the investigation of Japanese paintings. Stud Conserv. 2001;46:153–62.Google Scholar

  • [12]

    Bacci M, Picollo M. Non-destructive detection of Co(II) in paintings and glasses. Stud Conserv. 1996;41:136–44.Google Scholar

  • [13]

    Delaney JK, Ricciardi P, Deming Glinsman L, Facini M, Thoury M, Palmer MR, et al. Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud Conserv. 2014;59:91–101.CrossrefGoogle Scholar

  • [14]

    Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, et al. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal Meth. 2014;6:1488–500.CrossrefGoogle Scholar

  • [15]

    Bacci M, Baldini F, Carlà R, Linari R. A color analysis of the Brancacci Chapel Frescoes. Appl Spectrosc. 1991;45:26–31.CrossrefGoogle Scholar

  • [16]

    Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D. Non-invasive identification of white pigments on twentieth century oil paintings by using fiber optic reflectance spectroscopy. J Am Inst Conser. 2007;46:27–37.CrossrefGoogle Scholar

  • [17]

    de la Rie ER. Fluorescence of Paint and Varnish layers (Part I). Stud Conserv. 1982;27:1–7.Google Scholar

  • [18]

    Romani A, Clementi C, Miliani C, Favaro G. Fluorescence spectroscopy: A powerful technique for the noninvasive characterization of artwork. Acc Chem Res. 2010;43:837–46.PubMedCrossrefGoogle Scholar

  • [19]

    Claro A, Melo MJ, Seixas de Melo JS, van Den Berg KJ, Burnstock A, Montague M, et al. Identification of red colorants in van Gogh Paintings and Ancient andean textiles by microspectrofluorimetry. J Cult Heritage. 2010;11:27–34.CrossrefGoogle Scholar

  • [20]

    Melo MJ, Claro A. Bright light: microspectrofluorimetry for the characterization of Lake Pigments and Dyes in works of art. Acc Chem Res. 2010;43:857–66.CrossrefPubMedGoogle Scholar

  • [21]

    Mounier A, Lazare S, Le Bourdon G, Aupetit C, Servant L, Daniel F. LEDμSF: a new portable device for fragile artworks analyses. application on medieval pigments. Microchem J. 2016;126:480–87.CrossrefGoogle Scholar

  • [22]

    Claro A, Melo MJ, Schäfer S, Seixas de Melo JS, Pina F, van Den Berg KJ, et al. The use of microspectrofluorimetry for the characterization of Lake Pigments. Talanta. 2008;74:922–29.CrossrefPubMedGoogle Scholar

  • [23]

    Matteini P, Camaiti M, Agati G, Baldo MA, Muto S, Matteini M. Discrimination of Painting binders subjected to photo-ageing by using microspectrofluorometry coupled with deconvolution analysis. J Cult Heritage. 2009;10:198–205.CrossrefGoogle Scholar

  • [24]

    Melo MJ, Otero V, Vitorino T, Araújo R, Muralha VSF, Lemos A, et al. A Spectroscopic study of Brazilwood Paints in medieval books of hours. Appl Spectrosc. 2014;68:434–44.CrossrefPubMedGoogle Scholar

  • [25]

    Melo MJ, Nabais P, Guimarães M, Araújo R, Castro R, Oliveira MC, et al. Organic Dyes in illuminated manuscripts: a unique cultural and historic record. Philos Trans R Soc A Math Phys Eng Sci. 2016;374:1–20.Google Scholar

  • [26]

    Nabais P, Melo MJ, Lopes JA, Vitorino T, Neves A, Castro R. Microspectrofluorimetry and chemometrics for the identification of medieval lake pigments. Heritage Sci. 2018;6:1–11.Google Scholar

  • [27]

    Vitorino T, Melo MJ, Carlyle L, Otero V. New insights into Brazilwood lake pigments manufacture through the use of historically accurate reconstructions. Stud Conserv. 2016;61:255–73.CrossrefGoogle Scholar

  • [28]

    Castro R, Pozzi F, Leona M, Melo MJ. Combining SERS and microspectrofluorimetry with historically accurate reconstructions for the characterization of Lac Dye Paints in medieval manuscript illuminations. J Raman Spectro. 2014;45:1172–79.CrossrefGoogle Scholar

  • [29]

    Vitorino T, Otero V, Leslie C, Melo MJ, Parola AJ, Picollo M, 2017, Nineteenth-century Cochineal Lake Pigments from Winsor & Newton: insight into their methodology through reconstructions. In: Bridgland J, editors. ICOM-CC 18th Triennial Conference Preprints. Copenhagen. Paris: International Council of Museums, 4-8 Sep 2017. 1–9.Google Scholar

  • [30]

    Nassau K. The physics and chemistry of color, the fifteen causes of color. New York: Wiley & Sons; 1983.Google Scholar

  • [31]

    Mitton PB. Opacity, hiding power, and tinting strength. In: Patton TC, editor. Pigment handbook volume III characterization and physical relationships. New York: Wiley & Sons, 1973: 289–329.Google Scholar

  • [32]

    Burns RG. Mineralogical applications of crystal field theory. 2nd ed. Cambridge Topics in Mineral Physics and Chemistry Vol. 5. Cambridge: Cambridge University Press, 1993.Google Scholar

  • [33]

    Vincent RK, Hunt GR. Infrared reflectance from mat surfaces. Appl Opt. 1968;7:53–59.CrossrefPubMedGoogle Scholar

  • [34]

    Kubelka P, Munk F. Ein Beitrag Zur Optik Der Farbanstriche. Z Tech Phys. 1931;12:593–601.Google Scholar

  • [35]

    Hollas JM. Modern spectroscopy. 2nd ed. New York: John Wiley & Sons, 1992.Google Scholar

  • [36]

    Lakowicz JR. Principles of fluorescence spectroscopy. Berlin/Heidelberg: Springer Science+Business Media, LLC; 2006.Google Scholar

  • [37]

    Valeur B. Molecular fluorescence: principles and applications. Weinheim (Germany): Wiley-VCH Verlag GmbH, 2001.Google Scholar

  • [38]

    Semwogerere D, Weeks ER. Confocal microscopy. In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. 2nd ed. Vol. I. Boca Raton, Florida, USA: Taylor & Francis, 2008: 705–14.Google Scholar

  • [39]

    Workman J. Ultraviolet, visible, and near-infrared spectrometry. In: Workman J, Springsteen A, editors. Applied spectroscopy. A compact reference for practitioners. San Diego: Academic Press, 1998: 29–48.Google Scholar

  • [40]

    Springsteen A. Reflectance Spectroscopy: an overview of classification and techniques. In: Workman J, Springsteen A, editor(s). Applied spectroscopy. A compact reference for practitioners. San Diego: Academic Press, 1998:193–224.Google Scholar

  • [41]

    Feather GA, Monk DW, 1995, The digital micromirror device for projection display. In: Proceedings IEEE International Conference on Wafer Scale Integration (ICWSI). San Francisco, California, USA: Tewksbury and Chapman (Eds.), 18-20 Jan 1995. 43–51.Google Scholar

  • [42]

    Springsteen A. Standards for reflectance measurements. In: Workman J, Springsteen A, editor(s). Applied spectroscopy. A compact reference for practitioners. San Diego: Academic Press, 1998:247–67.Google Scholar

  • [43]

    Appolonia L, Vaudan D, Chatel V, Aceto M, Mirti P. Combined use of FORS, XRF and Raman spectroscopy in the study of mural paintings in the Aosta Valley (Italy). Anal Bioanal Chem. 2009;395:2005–13.CrossrefGoogle Scholar

  • [44]

    Bacci M, Baldini F, Carlà R, Linari R, Picollo M, Radicati B. A color analysis of the Brancacci Chapel Frescoes. part II. Appl Spectrosc. 1993;47:399–402.CrossrefGoogle Scholar

  • [45]

    Bacci M, Picollo M, Radicati B, Casini A, Lotti F, Stefani L. Non-destructive investigation of wall painting pigments by means of fibre-optic reflectance spectroscopy. Sci Technol Cult Heritage. 1998;7:73–81.Google Scholar

  • [46]

    Aceto M, Agostino A, Fenoglio G, Baraldi P, Zannini P, Hofmann C, et al. First analytical evidences of precious colourants on mediterranean illuminated manuscripts. Spectrochim Acta A. 2012;95:235–45.CrossrefGoogle Scholar

  • [47]

    Delaney JK, Ricciardi P, Deming Glinsman L, Facini M, Thoury M, Palmer MR, et al. Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud Conserv. 2013;59:91–101.Google Scholar

  • [48]

    Aceto M, Agostino A, Fenoglio G, Idone A, Crivello F, Griesser M, et al. Analytical investigations on the coronation gospels manuscript. Spectrochim Acta A. 2017;171:213–21.CrossrefGoogle Scholar

  • [49]

    Cucci C, Bracci S, Casini A, Innocenti S, Picollo M, Stefani L, et al. The illuminated manuscript corale 43 and its attribution to Beato Angelico: non-invasive analysis by FORS, XRF and hyperspectral imaging techniques. Microchem J. 2018;138:45–57.CrossrefGoogle Scholar

  • [50]

    Dupuis G, Menu M. Quantitative characterisation of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy. Appl Phys A. 2006;83:469–74.CrossrefGoogle Scholar

  • [51]

    Fernandez Rodrıguez JM, Fernandez Fernandez JA. Application of the second derivative of the Kubelka–munk function to the semiquantitative analysis of Roman Paintings. Color Res Appl. 2005;30:448–56.CrossrefGoogle Scholar

  • [52]

    Bacci M, Casini A, Cucci C, Picollo M, Radicati B, Vervat M. Non-invasive spectroscopic measurements on the Il ritratto della figliastra by Giovanni Fattori: identification of pigments and colourimetric analysis. J Cult Heritage. 2003;4:329–36.CrossrefGoogle Scholar

  • [53]

    Aceto M, Calà E. Analytical evidences of the use of iron-gall ink as a pigment on miniature paintings. Spectrochim Acta A. 2017;187:1–8.CrossrefGoogle Scholar

  • [54]

    Cucci C, Bartolozzi G, De Vita M, Marchiafava V, Picollo M, Casadio F. The colors of Keith Haring: a spectroscopic study on the materials of the mural painting Tuttomondo and on reference contemporary outdoor paints. Appl Spectrosc. 2016;70:186–96.CrossrefGoogle Scholar

  • [55]

    Cucci C, Bigazzi L, Picollo M. Fibre optic reflectance spectroscopy as a non-invasive tool for investigating plastics degradation in contemporary art collections: A methodological study on an expanded polystyrene artwork. J Cult Heritage. 2013;14:290–96.CrossrefGoogle Scholar

  • [56]

    Montagner C, Bacci M, Bracci S, Freeman R, Picollo M. Library of UV–Vis–NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers. Spectrochim Acta A. 2011;79:1669–80.CrossrefGoogle Scholar

  • [57]

    Saunders D. The measurement of colour change in paintings. Eur Spectrosc News. 1986;67:10–18.Google Scholar

  • [58]

    Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P, Hoenigswald A, et al. Mapping of egg yolk and animal skin glue paint binders in early renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst. 2013;138:4838–48.PubMedCrossrefGoogle Scholar

  • [59]

    Pallipurath A, Skelton J, Ricciardi P, Bucklow S, Elliott S. Multivariate analysis of combined Raman and fibre-optic reflectance spectra for the identification of binder materials in simulated medieval paints. J Raman Spectro. 2013;44:866–74.CrossrefGoogle Scholar

  • [60]

    Cucci C, Bacci M, Picollo M, Olmi R. Non invasive techniques for identification and characterisation of polymers in contemporary artworks. In: Berchtold T, editor. Future talks 009. The conservation of modern materials in applied arts and design. Munich: Die Neue Sammlung, 2011: 178–84.Google Scholar

  • [61]

    Morales KM, Berrie BH. A note on characterization of the Cochineal Dyestuff on wool using microspectrophotometry. E Preserv Sci. 2015;12:8–14.Google Scholar

  • [62]

    Pozzi F, Poldi G, Bruni S, De Luca E, Guglielmi V. Multi-technique characterization of dyes in ancient Kaitag textiles from Caucasus. Archaeol Anthropological Sci. 2012;4:185–97.CrossrefGoogle Scholar

  • [63]

    Angelini LG, Tozzi S, Bracci S, Quercioli F, Radicati B, Picollo M, 2010, Characterization of traditional dyes of the Mediterranean area by non-invasive UV-Vis-NIR reflectance spectroscopy. In: Conservation and the Eastern Mediterranean Proceedings of the IIC Istanbul Congress. Istanbul (Turkey),Sep 20-24 2010. 184–89.Google Scholar

  • [64]

    Gulmini M, Idone A, Davit P, Moi M, Carrillo M, Ricci C, et al. The Coptic textiles of the Museo Egizio di Torino: a focus on dyes through a multi-technique approach. Archaeol Anthropological Sci. 2016;9:485–97.Google Scholar

  • [65]

    Maynez-Rojas MA, Casanova-González E, Ruvalcaba-Sil JL. Identification of natural red and purple dyes on textiles by fiber-optics reflectance spectroscopy. Spectrochim Acta A. 2017;178:239–50.CrossrefGoogle Scholar

  • [66]

    de Ferri L, Tripodi R, Martignon A, Ferrari ES, Lagrutta-Diaz AC, Vallotto D, et al. Non-invasive study of natural dyes on historical textiles from the collection of Michelangelo Guggenheim. Spectrochim Acta A. 2018;204:548–67.CrossrefGoogle Scholar

  • [67]

    Gulmini M, Idone A, Diana E, Gastaldi D, Vaudan D, Aceto M. Identification of dyestuffs in historical textiles: strong and weak points of a non-invasive approach. Dyes Pigm. 2013;98:136–45.CrossrefGoogle Scholar

  • [68]

    Quinten M. The color of finely dispersed nanoparticles. Appl Phys B. 2001;73:317–26.CrossrefGoogle Scholar

  • [69]

    Terczynska-Madej A, Cholewa-Kowalska K, Laczka M. The effect of silicate network modifiers on colour and electron spectra of transition metal ions. Opt Mater. 2010;32:1456–62.CrossrefGoogle Scholar

  • [70]

    Schreiber HD, Stone MA, Swink AM. Novel red–blue dichroic glass containing copper nanocrystals. J Non-Cryst Solids. 2006;352:534–38.CrossrefGoogle Scholar

  • [71]

    Bamford CR. Colour generation and control in glass. Amsterdam: Elsevier, 1977.Google Scholar

  • [72]

    Meulebroeck W, Baert K, Ceglia A, Cosyns P, Wouters H, Nys K, et al. The potential of UV-VIS-NIR absorption spectroscopy in glass studies. In: Meulebroeck W, Nys K, Vanclooster D, Thienpont H, editors. Proceedings of SPIE Vol. 8422, integrated approaches to the study of historical glass - IAS12. Vol. 8422. Belgium: SPIE Brussels 2012: 842208–1-11.Google Scholar

  • [73]

    Schreus JW, Brill RH. Iron and sulfur related colors in ancient glasses. Archaeometry. 1984;26:199–209.CrossrefGoogle Scholar

  • [74]

    Reiche I, Röhrs S, Salomon J, Kanngießer B, Höhn Y, Malzer W, et al. Development of a nondestructive method for underglaze painted tiles - demonstrated by the analysis of Persian objects from the nineteenth century. Anal Bioanal Chem. 2009;393:1025–41.CrossrefPubMedGoogle Scholar

  • [75]

    Meulebroeck W, Cosyns P, Baert K, Wouters H, Cagno S, Janssens K, et al. Optical spectroscopy as a rapid and low-cost tool for the first-line analysis of glass artefacts: a step-by-step plan for Roman green glass. J Archaeol Sci. 2011;38:2387–98.CrossrefGoogle Scholar

  • [76]

    Arletti R, Conte S, Vandini M, Fiori C, Bracci S, Bacci M, et al. Florence baptistery: chemical and mineralogical investigation of glass mosaic tesserae. J Archaeol Sci. 2011;38:79–88.CrossrefGoogle Scholar

  • [77]

    Galli A, Poldi G, Martini M, Sibilia E, Montanari C, Panzeri L. Study of blue colour in ancient mosaic tesserae by means of thermoluminescence and reflectance measurements. Appl Phys A. 2006;83:675–79.CrossrefGoogle Scholar

  • [78]

    Mirti P, Davit P, Gulmini M. Colourants and opacifiers in seventh and eighth century glass investigated by spectroscopic techniques. Anal Bioanal Chem. 2002;372:221–29.CrossrefPubMedGoogle Scholar

  • [79]

    Möncke D, Papageorgiou M, Winterstein-Beckmann A, Zacharias N. Roman glasses coloured by dissolved transition metal ions: redox reactions, optical spectroscopy and ligand field theory. J Archaeol Sci. 2014;46:23–36.CrossrefGoogle Scholar

  • [80]

    Agostino A, Aceto M, Fenoglio G, Operti L. Analisi non invasive sugli smalti limosini medievali di Palazzo Madama. In: Castronovo S, editor. Smalti di Limoges del XIII secolo. Savigliano, Italy: L’Artistica Editrice, 2014: 211–39.Google Scholar

  • [81]

    Grazzi F, Iannaccone R, Barzagli E, Civita F, Salvemini F, Picollo M, et al. 2011. UV-VIS-NIR specular reflectance spectroscopy: a non invasive and portable technique for the characterization of the conservation status of ancient swords. Application to the Japanese blade collection of the Stibbert museum. In: Proc. ART11, 10th International Conference on non-destructive investigations and microanalysis for the diagnostics and conservation of cultural and environmental heritage. Florence: CD-ROM. 13-15 Apr 2011.Google Scholar

  • [82]

    Torrent J, Barròn V. Diffuse reflectance spectroscopy of iron oxides. In: Hubbard AT, editor. Encyclopedia of surface and colloid science. New York: Marcel Dekker, 2002: 1438–46.Google Scholar

  • [83]

    Rossman GR. Colored varieties of the silica minerals. Rev Mineral. 1994;29:433–68.Google Scholar

  • [84]

    Wood DL, Nassau K. The characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am Mineral. 1968;53:777–800.Google Scholar

  • [85]

    Izawa MRM, Cloutis EA, Rhind T, Mertzman SA, Poitras J, Applin DM, et al. Spectral reflectance (0.35–2.5 μm) properties of garnets: implications for remote sensing detection and characterization. Icarus. 2018;300:392–410.CrossrefGoogle Scholar

  • [86]

    Liu Y, Lu T, Mu T, Chen H, Ke J. Color measurement of a ruby. Color Res Appl. 2013;38:328–33.CrossrefGoogle Scholar

  • [87]

    Bristow JK, Parker SC, Catlow CRA, Woodley SM, Walsh A. Microscopic origin of the optical processes in blue sapphire. Chem Commun. 2013;49:5259–61.CrossrefGoogle Scholar

  • [88]

    Qiu JT, Qi H, Duan JL. Reflectance spectroscopy characteristics of turquoise. Minerals. 2017;7:1–10.Google Scholar

  • [89]

    Aceto M, Agostino A, Fenoglio G, Gulmini M, Bianco V, Pellizzi E. Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochim Acta A. 2012;91:352–59.CrossrefGoogle Scholar

  • [90]

    Aceto M, Agostino A, Fenoglio G, Picollo M. Non-invasive differentiation between natural and synthetic ultramarine blue pigments by means of 250–900 nm FORS analysis. Anal Meth. 2013;5:4184–89.CrossrefGoogle Scholar

  • [91]

    Orlando A, Picollo M, Radicati B, Baronti S, Casini A. Principal component analysis of near-infrared and visible spectra: an application to a XIIth century Italian work of art. Appl Spectrosc. 1995;49:459–65.CrossrefGoogle Scholar

About the article

Published Online: 2018-11-14

Citation Information: Physical Sciences Reviews, Volume 4, Issue 4, 20180008, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0008.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in