Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Substituent effects on linear and nonlinear optical properties of fluorescent (E)-2-(4-halophenyl)-7-arlstyrylimidazo[1,2-A]
pyridine: spectroscopic and computational methods

Siddheshwar D. Jadhav
  • Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai (MH) 40001, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ponnadurai Ramasami
  • Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, USA
  • Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nagaiyan Sekar
  • Corresponding author
  • Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai (MH) 40001, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-10 | DOI: https://doi.org/10.1515/psr-2018-0032


Effects of alkylamino and bromo substituents on imidazo[1,2-a]pyridines containing donor-π-acceptor type groups were comprehensively investigated for their linear and nonlinear optical properties by solvatochromic and DFT (CAM-B3LYP and BHandHLYP) methods. The difference between the ground and excited dipole moments as well as their ratios obtained by solvatochromic analysis indicate that the excited state is more polar than the ground state for both the bromo and diethyl amino derivative. More than twofold enhancement in the excited state dipole moments was observed as revealed by the difference and ratio of dipole moment upon the introduction of alkylamino donor group and these suggest large intramolecular charge transfer in the dyes. Stabilization energy above 20kJ/mol was observed for large number of electron donor–acceptor interactions in Natural Bonding Orbital (NBO) analysis. Bond length alternation (BLA) and Bond order alternation (BOA) values tend to zero suggesting a high degree of polarization in the dyes. Enhancement in mean polarizability (α0), first hyperpolarizability (β0) and second static hyperpolarizabilities (γˉ) were observed by the introduction of alkylamino and bromo group in place of chloro in spite of the fact that Hammett constant of chloro and bromo are the same. The dyes have fundamental and intrinsic properties within the Hamiltonian limits. The two-photon absorption cross section value (≈100GM) is comparable with LDS-698, a commercial TPA dye. This investigation is important for understanding the electronic structure of imidazo[1,2-a]pyridine with active functional groups and extending the potential for optical applications.

This article offers supplementary material which is provided at the end of the article.

Keywords: Imidazo[1,2-a]pyridine; DFT; TDDFT; fundamental limits; two photon absorption; NLO properties


  • [1]

    Kurteva VB, Lubenov LA, Antonova DV. On the mechanism of the direct acid catalyzed formation of 2,3-disubstituted imidazo[1,2-a]pyridines from 2-aminopyridines and acetophenones. Concurrence between ketimine and Ortoleva-King type reaction intermediated transformations. RSC Adv. 2014;4:175–84.CrossrefGoogle Scholar

  • [2]

    Ray PC. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev. 2010;110:5332–65.CrossrefPubMedGoogle Scholar

  • [3]

    Niziol J, Baran W, Gondek E, I V K, Mendys A, Żylewski M, et al. Synthesis and NLO properties XE “NLO properties” of new chromophores based on imidazo[1,2-a]pyridine. Chem Eng Commun. 2009;196:1466–74.CrossrefGoogle Scholar

  • [4]

    Couty F, Evano G. Bicyclic 5-6 systems with one bridgehead (ring junction) nitrogen atom: one extra heteroatom 1:0. Compr Heterocycl Chem III. 2008;11:409–99.Google Scholar

  • [5]

    Jianliang Z, Jianchao L, Qiyuan C. Advances in synthesis of imidazopyridine derivatives. Chinese J Org Chem. 2009;29:1708–18.Google Scholar

  • [6]

    Shibahara F, Yamaguchi E, Kitagawa A, Imai A, Murai T. Synthesis of 1,3-diarylated imidazo[1,5-a]pyridines with a combinatorial approach: metal-catalyzed cross-coupling reactions of 1-halo-3-arylimidazo[1,5-a]pyridines with arylmetal reagents. Tetrahedron. 2009;65:5062–73.CrossrefGoogle Scholar

  • [7]

    Nagarajan N, Velmurugan G, Prakash A, Shakti N, Katiyar M, Venuvanalingam P, et al. Highly emissive luminogens based on imidazo[1,2-a]pyridine XE “imidazo[1,2-a]pyridine” for electroluminescent applications. Chem – Asian J. 2014;9:294–304.CrossrefGoogle Scholar

  • [8]

    Leopoldo M, Lacivita E, Passafiume E, Contino M, Colabufo NA, Berardi F. High-affinity dopamine D 3 receptor ligands as potential probes for receptor visualization. J Med Chem. 2007;50:5043–7.CrossrefGoogle Scholar

  • [9]

    Shao N, Pang G-X, Yan C-X, Shi G-F CY. Reaction of β-lactam carbenes with 2-pyridyl isonitriles: a one-pot synthesis of 2-carbonyl-3-(pyridylamino)imidazo[1,2-a]pyridines useful as fluorescent probes for mercury ion. J Org Chem. 2011;76:7458–65.CrossrefPubMedGoogle Scholar

  • [10]

    Laquintana V, Denora N, Lopedota A, Suzuki H, Sawada M, Serra M, et al. N-benzyl-2-(6,8-dichloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl) -N-(6-(7-nitrobenzo[c][1,2,5]oxadiazol-4-ylamino)hexyl)acetamide as a new fluorescent probe for peripheral benzodiazepine receptor and microglial cell visualization. Bioconjug Chem. 2007;18:1397–407.CrossrefGoogle Scholar

  • [11]

    Padalkar VS, Seki S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev. 2016;45:169–202.CrossrefPubMedGoogle Scholar

  • [12]

    Mutai T, Sawatani H, Shida T, Shono H, Araki K. Tuning of excited-state intramolecular proton transfer (ESIPT) fluorescence of imidazo[1,2-a]pyridine XE “imidazo[1,2-a]pyridine” in rigid matrices by substitution effect. J Org Chem. 2013;78:2482–9.CrossrefGoogle Scholar

  • [13]

    Mutai T, Tomoda H, Ohkawa T, Yabe Y, Araki K. Switching of polymorph-dependent ESIPT luminescence of an imidazo[1,2-a]pyridine XE “imidazo[1,2-a]pyridine” derivative. Angew Chemie Int Ed. 2008;47:9522–4.CrossrefGoogle Scholar

  • [14]

    Xie X, Choi B, Largy E, Guillot R, Granzhan A, Teulade-Fichou M-P. Asymmetric distyrylpyridinium dyes as red-emitting fluorescent probes for quadruplex DNA. Chem - A Eur J. 2013;19:1214–26.CrossrefGoogle Scholar

  • [15]

    Aranda AI, Achelle S, Hammerer F, Mahuteau-Betzer F, Teulade-Fichou M-P. Vinyl-diazine triphenylamines and their N-methylated derivatives: synthesis, photophysical properties and application for staining DNA. Dye Pigment. 2012;95:400–7.CrossrefGoogle Scholar

  • [16]

    Kovalska VB, Losytskyy MY, D V K, Balanda AO, Tokar VP, Yarmoluk SM. Synthesis of novel fluorescent styryl dyes based on the imidazo[1,2-a]pyridinium chromophore and their spectral-fluorescent properties in the presence of nucleic acids and proteins. Dye Pigment. 2006;68:39–45.CrossrefGoogle Scholar

  • [17]

    Vabre R, Legraverend M, Piguel S. Synthesis and evaluation of spectroscopic properties of newly synthesized push-pull 6-amino-8-styryl purines. Dye Pigment. 2014;105:145–51.CrossrefGoogle Scholar

  • [18]

    Zhou G, Wang D, Ren Y, Yang S, Xu X, Shao Z, et al. Temporal and spectral properties of picosecond two-photon pumped cavity lasing of an organic dye HEASPS. Appl Phys B Lasers Opt. 2002;74:147–9.CrossrefGoogle Scholar

  • [19]

    Achelle S, Barsella A, Baudequin C, Caro B, Robin-Le Guen F. Synthesis and photophysical investigation of a series of push-pull arylvinyldiazine chromophores. J Org Chem. 2012;77:4087–96.CrossrefPubMedGoogle Scholar

  • [20]

    Qin C, Zhang W, Wang Z, Zhou M, Wang X, Chen G. Optical properties of stilbene-type dyes containing various terminal donor and acceptor groups. Opt Mater (Amst). 2008;30:1607–15.CrossrefGoogle Scholar

  • [21]

    Ruland G, Gvishi R, Prasad PN. Multiphasic nanostructured composite: multi-dye tunable solid state laser. J Am Chem Soc. 1996;118:2985–91.CrossrefGoogle Scholar

  • [22]

    He GS, Bhawalkar JD, Zhao CF, Prasad PN. Optical limiting effect in a two-photon absorption dye doped solid matrix. Appl Phys Lett. 1995;67:2433.CrossrefGoogle Scholar

  • [23]

    Deligeorgiev T, Vasilev A, Kaloyanova S, Vaquero JJ. Styryl dyes – synthesis and applications during the last 15 years. Color Technol. 2010;126:55–80.CrossrefGoogle Scholar

  • [24]

    Mashraqui SH, Ghorpade SS, Tripathi S, Britto S. A new indole incorporated chemosensor exhibiting selective colorimetric and fluorescence ratiometric signaling of fluoride. Tetrahedron Lett. 2012;53:765–8.CrossrefGoogle Scholar

  • [25]

    Suresh S, Ramanand A, Jayaraman D, Mani P. Review on theoretical aspect of nonlinear optics. Rev Adv Mater Sci. 2012;30:175–83.Google Scholar

  • [26]

    Shi Y, Lou AJ-T, He GS, Baev A, Swihart MT, Prasad PN, et al. Cooperative coupling of cyanine and tictoid twisted π-systems to amplify organic chromophore cubic nonlinearities. J Am Chem Soc. 2015;137:4622–5.CrossrefPubMedGoogle Scholar

  • [27]

    Kang H, Facchetti A, Zhu P, Jiang H, Yang Y, Cariati E, et al. Exceptional molecular hyperpolarizabilities in twisted ??-electron system chromophores. Angew Chemie - Int Ed. 2005;44:7922–5.CrossrefGoogle Scholar

  • [28]

    Meyers F, Marder SR, Pierce BM, Bredas JL. Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., .beta., and .gamma.) and bond length alternation. J Am Chem Soc. 1994;116:10703–14.CrossrefGoogle Scholar

  • [29]

    Kang H, Facchetti A, Jiang H, Cariati E, Righetto S, Ugo R, et al. Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. J Am Chem Soc. 2007;129:3267–86.PubMedCrossrefGoogle Scholar

  • [30]

    Zhang C-Z, Li T, Yuan Y, Gu C-Y, Niu M-X CH. Effect of bromine substituent on optical properties of aryl compounds. J Phys Org Chem. 2017;30:e3620–n/a.Google Scholar

  • [31]

    Zhang C-Z, Wang C-Y, Im C, Lu G-Y, Wang C-S. Significant effect of bromo substituents on nonlinear optical properties of polymer and chromophores. J Phys Chem B. 2010;114:42–8.CrossrefPubMedGoogle Scholar

  • [32]

    Warde U, Sekar N. NLOphoric mono-azo dyes with negative solvatochromism and in-built ESIPT unit from ethyl 1,3-dihydroxy-2-naphthoate: estimation of excited state dipole moment and pH study. Dye Pigment. 2017;137:384–94.CrossrefGoogle Scholar

  • [33]

    Ciuciu AI, Firmansyah D, Hugues V, Blanchard-Desce M, Gryko DT, Flamigni L. Non-classical donor-acceptor-donor chromophores. A strategy for high two-photon brightness. J Mater Chem C. 2014;2:4552–65.CrossrefGoogle Scholar

  • [34]

    Laurent AD, Adamo C, Jacquemin D. Dye chemistry with time-dependent density functional theory. Phys Chem Chem Phys. 2014;16:14334–56.PubMedCrossrefGoogle Scholar

  • [35]

    Laurent AD, Jacquemin D. TD-DFT XE “DFT” benchmarks: a review. Int J Quantum Chem. 2013;113:2019–39.CrossrefGoogle Scholar

  • [36]

    Cramer CJ, Truhlar DG. Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys. 2009;11:10757–816.CrossrefPubMedGoogle Scholar

  • [37]

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09. Wallingford CT: Gaussian, Inc.; 2010.Google Scholar

  • [38]

    Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–8.CrossrefGoogle Scholar

  • [39]

    Menzel R, Ogermann D, Kupfer S, Weiß D, Görls H, Kleinermanns K, et al. 4-Methoxy-1,3-thiazole based donor-acceptor dyes: characterization, X-ray structure, DFT XE “DFT” calculations and test as sensitizers for DSSC. Dye Pigment. 2012;94:512–24.CrossrefGoogle Scholar

  • [40]

    Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.CrossrefGoogle Scholar

  • [41]

    Rajeev S, Husain MM. Solvent effect on coumarin dye: calculation of ground and excited state dipole moments. J Indian Chem Soc. 2011;88:1541–6.Google Scholar

  • [42]

    Deshmukh MS, Sekar N. Dyes and pigments A combined experimental and TD-DFT XE “DFT” investigation of three disperse azo dyes having the nitroterephthalate skeleton. Dye Pigment. 2014;103:25–33.CrossrefGoogle Scholar

  • [43]

    Wong MW, Frisch MJ, Wiberg KB. Solvent effects. 1. The mediation of electrostatic effects by solvents. J Am Chem Soc. 1991;113:4776–82.CrossrefGoogle Scholar

  • [44]

    Dennington R, Keith TMJ. Gaussview. USA: Gaussian Inc., 2009.Google Scholar

  • [45]

    Seferoʇlu Z, Ihmels H, Şahin E. Synthesis and photophysical properties of fluorescent arylstyrylimidazo[1,2-a]pyridine-based donor-acceptor chromophores. Dye Pigment. 2015;113:465–73.CrossrefGoogle Scholar

  • [46]

    Mataga N, Kaifu Y, Koizumi M. No title. Bull Chem Soc Jpn. 1956;29:465–70.Google Scholar

  • [47]

    Lippert E. No Title. Z Naturforsch Tl A. 2004;1955:541.Google Scholar

  • [48]

    McRae EG. Theory of solvent effects on molecular electronic spectra. Frequency Shifts J Phys Chem. 1957;61:562–72.CrossrefGoogle Scholar

  • [49]

    Kothavale S, Sekar N. Novel pyrazino-phenanthroline based rigid donor-π-acceptor compounds: a detail study of optical properties, acidochromism, solvatochromism and structure-property relationship. Dye Pigment. 2017;136:31–45.CrossrefGoogle Scholar

  • [50]

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision C.01. Gaussian 09, Revis B01. Wallingford CT: Gaussian, Inc; 2009.Google Scholar

  • [51]

    Afroz Z, Mj A, Zulkarnain FM, Ahmad A, Ahmad S. DFT XE “DFT” and TD-DFT computation of charge transfer complex between o-phenylenediamine and 3,5-dinitrosalicylic acid. AIP Conf Proc. 2016;1731:90038.CrossrefGoogle Scholar

  • [52]

    Momicchioli F, Ponterini G, Vanossi D. First- and second-order polarizabilities of simple merocyanines. An experimental and theoretical reassessment of the two-level model. J Phys Chem A. 2008;112:11861–72.PubMedCrossrefGoogle Scholar

  • [53]

    Vidya S, Ravikumar C, Hubert Joe I, Kumaradhas P, Devipriya B, Raju K. Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: a density functional theoretical approach. J Raman Spectrosc. 2011;42:676–84.CrossrefGoogle Scholar

  • [54]

    Lytel R. Physics of the fundamental limits XE “fundamental limits” of nonlinear optics: a theoretical perspective [Invited]. J Opt Soc Am B. 2016;33:E66–82.CrossrefGoogle Scholar

  • [55]

    Kuzyk MG. Physical limits on electronic nonlinear molecular susceptibilities. Phys Rev Lett. 2000;85:1218–21.CrossrefPubMedGoogle Scholar

  • [56]

    Zhou J, Kuzyk* MG. Intrinsic hyperpolarizabilities as a figure of merit for electro-optic molecules. J Phys Chem C. 2008;112:7978–82.CrossrefGoogle Scholar

  • [57]

    Pérez-Moreno J, Zhao Y, Clays K, Kuzyk MG. Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability. Opt Lett. 2007;32:59–61.PubMedCrossrefGoogle Scholar

  • [58]

    Meyers F, Marder SR, Pierce BM, Bredas JL, F M, Marder, et al. Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (alpha,beta, and gamma) and bond length alternation. J Am Chem Soc. 1994;116:10703–14. SR DOI: CrossrefGoogle Scholar

  • [59]

    Kuzyk MG. Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility. J Chem Phys. 2006;125:154108.CrossrefPubMedGoogle Scholar

  • [60]

    Zhou J, Kuzyk MG, Watkins DS. Pushing the hyperpolarizability to the limit. Opt Lett. 2006;31:2891–3.CrossrefPubMedGoogle Scholar

  • [61]

    Kuzyk MG. Using fundamental principles to understand and optimize nonlinear-optical materials. J Mater Chem. 2009;19:7444–65.CrossrefGoogle Scholar

  • [62]

    Kuzyk MG, Dirk CW. Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. Phys Rev A. 1990;41:5098–109.CrossrefPubMedGoogle Scholar

  • [63]

    Kogej T, Beljonne D, Meyers F, Perry JW, Marder SR, Brédas JL. Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores. Chem Phys Lett. 1998;298:1–6.CrossrefGoogle Scholar

  • [64]

    Drobizhev M, Meng F, Rebane A, Stepanenko Y, Nickel E, Spangler CW. Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways. J Phys Chem B. 2006;110:9802–14.PubMedCrossrefGoogle Scholar

  • [65]

    Rodrigues CAB, Mariz IFA, Ems M, Afonso CAM, Martinho JMG. Two-photon absorption properties of push–pull oxazolones derivatives. Dye Pigment. 2012;95:713–22.CrossrefGoogle Scholar

  • [66]

    Makarov NS, Campo J, Hales JM, Perry JW. Rapid, broadband two-photon-excited fluorescence spectroscopy and its application to red-emitting secondary reference compounds. Opt Mater Express. 2011;1:551–63.CrossrefGoogle Scholar

  • [67]

    Bishop DM, Champagne B, Kirtman B. Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push–pull molecules within the two-state valence-bond charge-transfer model. J Chem Phys. 1998;109:9987–94.CrossrefGoogle Scholar

  • [68]

    Robert WG, Zale R, Lipkowski P, Bartkowiak W, Reis H, Papadopoulos MG. Electronic structure, bonding, spectra, and linear and nonlinear electric properties of Ti @ C 28 2011:10370–81.

  • [69]

    Tathe AB, Gupta VD, Sekar N. Synthesis and combined experimental and computational investigations on spectroscopic and photophysical properties of red emitting 3-styryl coumarins. Dye Pigment. 2015;119:49–55.CrossrefGoogle Scholar

About the article

Published Online: 2018-10-10

Citation Information: Physical Sciences Reviews, Volume 4, Issue 4, 20180032, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0032.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in