Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 15, 2019

Polyoxometalates in photocatalysis

  • Carsten Streb EMAIL logo , Katharina Kastner and Johannes Tucher
From the journal Physical Sciences Reviews

Abstract

Recent developments in polyoxometalate photochemistry are discussed with a focus on visible light driven productive chemical reactions. Special attention is given to the fundamental photochemistry of polyoxometalates and the effects on the resulting photoprocesses.

Acknowledgements

This work is supported by the Fonds der Chemischen Industrie (FCI) through a Liebig-Fellowship and by the Deutsche Bundesstiftung Umwelt (DBU) through a doctoral fellowship. Support by the Institute of Inorganic Chemistry II is gratefully acknowledged. Prof Horst Kisch is gratefully acknowledged for many helpful discussions. This article is based on a Perspective Article published in Dalton Transactions, see reference 9.

References

[1] Jackson SD, Hargreaves JS, editors. Metal oxide catalysis. Weinheim: Wiley-VCH, 2008.10.1002/9783527626113Search in Google Scholar

[2] Pope MT. Heteropoly and isopoly oxometalates. Heidelberg: Springer-Verlag, 1983.10.1007/978-3-662-12004-0Search in Google Scholar

[3] Long DL, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev. 2007;36:105–21.10.1039/B502666KSearch in Google Scholar PubMed

[4] Long DL, Tsunashima R, Cronin L. Polyoxometalates: building blocks for functional nanoscale systems. Angewandte Chemie-Int Ed. 2010;49:1736–58.10.1002/anie.200902483Search in Google Scholar

[5] Pope MT, Müller A. Polyoxometalate chemistry – an old field with new dimensions in several disciplines. Angew Chemie-Int Ed English. 1991;30:34–48.10.1002/anie.199100341Search in Google Scholar

[6] Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A. Inorganic chemistry goes protein size: a Mo-368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angewandte Chemie-Int Ed. 2002;41:1162–7.10.1002/1521-3773(20020402)41:7<1162::AID-ANIE1162>3.0.CO;2-8Search in Google Scholar

[7] Hayashi Y. Hetero and lacunary polyoxovanadate chemistry. Coord Chem Rev. 2011;255:2270–80.10.1016/j.ccr.2011.02.013Search in Google Scholar

[8] Yamase T. Photo- and electrochromism of polyoxometalates and related materials. Chem Rev. 1998;98:307–25.10.1021/cr9604043Search in Google Scholar PubMed

[9] Streb C. New trends in polyoxometalate photoredox chemistry: from photosensitisation to water oxidation catalysis. Dalton Transact. 2012;41:1651–9.10.1039/C1DT11220ASearch in Google Scholar

[10] Hill CL, Prosser-McCartha CM. Photocatalytic and photoredox properties of polyoxometalate systems. In: Grätzel M, Kalyanasundaram K, editors. Photosensitization and photocatalysis using inorganic and organometallic compounds. Dordrecht: Kluwer Academic Publishers, 1993:307–26.10.1007/978-94-017-2626-9_10Search in Google Scholar

[11] Papaconstantinou E. Photochemistry of polyoxometallates of molybdenum and tungsten and-or vanadium. Chem Soc Rev. 1989;18:1–31.10.1039/cs9891800001Search in Google Scholar

[12] Duncan DC, Netzel TL, Hill CL. Early-time dynamics and reactivity of polyoxometalate excited-states – identification of a short-lived LMCT excited-state and a reactive long-lived charge-Transfer intermediate following picosecond flash excitation of [W10O32]4− in acetonitrile. Inorg Chem. 1995;34:4640–6.10.1021/ic00122a021Search in Google Scholar

[13] Papaconstantinou E, Hiskia A. Photochemistry and photocatalysis of polyoxometalates. In: Borras-Almenar JJ, Coronado E, Müller A, Pope MT, editors. Polyoxometalate molecular science. Dordrecht: Kluwer Academic Publishers, 2003:381–416.10.1007/978-94-010-0091-8_13Search in Google Scholar

[14] Tanielian C. Decatungstate photocatalysis. Coord Chem Rev. 1998;178:1165–81.10.1016/S0010-8545(98)00160-XSearch in Google Scholar

[15] Hill CL. Polyoxometalates: reactivity. Compr Coord Chem II. 2003;4:679–759.10.1016/B0-08-043748-6/03036-XSearch in Google Scholar

[16] Jaynes BS, Hill CL. Radical carbonylation of alkanes via polyoxotungstate photocatalysis. J Am Chem Soc. 1995;117:4704–5.10.1021/ja00121a028Search in Google Scholar

[17] Yamase T, Usami T. Photocatalytic dimerization of olefins by decatungstate(VI), [W10O32]4−, in acetonitrile and magnetic-resonance studies of photoreduced species. J Chem Soc-Dalton Transact. 1988:183–90.10.1039/DT9880000183Search in Google Scholar

[18] Mylonas A, Papaconstantinou E. On the mechanism of photocatalytic degradation of chlorinated phenols to CO2 and HCl by polyoxometalates. J Photochem Photobiol – Chem. 1996;94:77–82.10.1016/1010-6030(95)04207-5Search in Google Scholar

[19] Fox MA, Cardona R, Gaillard E. Photoactivation of metal-oxide surfaces – photocatalyzed oxidation of alcohols by heteropolytungstates. J Am Chem Soc. 1987;109:6347–54.10.1021/ja00255a019Search in Google Scholar

[20] Tanielian C, Duffy K, Jones A. Kinetic and mechanistic aspects of photocatalysis by polyoxotungstates: a laser flash photolysis, pulse radiolysis, and continuous photolysis study. J Phys Chem B. 1997;101:4276–82.10.1021/jp970475lSearch in Google Scholar

[21] Lewis NS, Nocera DG. Powering the planet. Proc Natl Acad Sci USA. 2006;103:15729–35.10.1073/pnas.0603395103Search in Google Scholar PubMed PubMed Central

[22] Geletii YV, Huang ZQ, Hou Y, Musaev DG, Lian TQ, Hill CL. Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. J Am Chem Soc. 2009;131:7522–3.10.1021/ja901373mSearch in Google Scholar PubMed

[23] Huang ZQ, Luo Z, Geletii YV, Vickers JW, Yin QS, Wu D, et al. Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J Am Chem Soc. 2011;133:2068–71.10.1021/ja109681dSearch in Google Scholar PubMed

[24] Puntoriero F, La Ganga G, Sartorel A, Carraro M, Scorrano G, Bonchio M, et al. Photo-induced water oxidation with tetra-nuclear ruthenium sensitizer and catalyst: a unique 4 × 4 ruthenium interplay triggering high efficiency with low-energy visible light. Chem Commun. 2010;46:4725–7.10.1039/c0cc00444hSearch in Google Scholar PubMed

[25] Botar B, Geletii YV, Kögerler P, Hillesheim DA, Musaev DG, Hill CL. An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angewandte Chemie-Int Ed. 2008;47:3896–9.10.1002/anie.200705652Search in Google Scholar PubMed

[26] Kuznetsov AE, Geletii YV, Hill CL, Morokuma K, Musaev DG. Dioxygen and water activation processes on multi-ru-substituted polyoxometalates: comparison with the “blue-dimer” water oxidation catalyst. J Am Chem Soc. 2009;131:6844–54.10.1021/ja900017gSearch in Google Scholar PubMed

[27] Yin QS, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science. 2010;328:342–5.10.1126/science.1185372Search in Google Scholar PubMed

[28] Orlandi M, Argazzi R, Sartorel A, Carraro M, Scorrano G, Bonchio M, et al. Ruthenium polyoxometalate water splitting catalyst: very fast hole scavenging from photogenerated oxidants. Chem Commun. 2010;46:3152–4.10.1039/b926823eSearch in Google Scholar PubMed

[29] Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, et al. Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8−. A totally inorganic oxygen-evolving catalyst. J Am Chem Soc. 2008;130:5006–7.10.1021/ja077837fSearch in Google Scholar PubMed

[30] Zhang ZY, Lin QP, Kurunthu D, Wu T, Zuo F, Zheng ST, et al. Synthesis and photocatalytic properties of a new heteropolyoxoniobate compound: K10[Nb2O2(H2O)2][SiNb12O40] ∙ 12 H2O. J Am Chem Soc. 2011;133:6934–7.10.1021/ja201670xSearch in Google Scholar PubMed

[31] Bernadini G, Zhao C, Wedd AG, Bond AM. Ionic-liquid enhance water photooxidation by P2W18O62. Inorg Chem. 2011;50:5899–909.10.1021/ic1016627Search in Google Scholar

[32] Zhao C, Bond AM. Photoinduced oxidation of water to oxygen in the ionic liquid BMIMBF4 as the counter reaction in the fabrication of exceptionally long semiconducting silver-tetracyanoquinodimethane nanowires. J Am Chem Soc. 2009;131:4279–87.10.1021/ja806893tSearch in Google Scholar PubMed

[33] Szczepankiewicz SH, Ippolito CM, Santora BP, Van de Ven TJ, Ippolito GA, Fronckowiak L, et al. Interaction of carbon dioxide with transition-metal-substituted heteropolyanions in nonpolar solvents. Inorg Chem. 1998;37:4344–52.10.1021/ic980162kSearch in Google Scholar PubMed

[34] Xu L, Gao GG, Li FY, Liu XZ, Yang YY. CO2 coordination by inorganic polyoxoanion in water. J Am Chem Soc. 2008;130:10838–9.10.1021/ja801560tSearch in Google Scholar PubMed

[35] Khenkin AM, Efremenko I, Weiner L, Martin JM, Neumann R. Photochemical reduction of carbon dioxide catalyzed by a ruthenium-substituted polyoxometalate. Chem-Eur J. 2010;16:1356–64.10.1002/chem.200901673Search in Google Scholar

[36] Argitis P, Papaconstantinou E. Photocatalytic multielectron photoreduction of 18-tungstodiphosphate in the presence of organic-compounds – production of hydrogen. J Photochem. 1985;30:445–51.10.1016/0047-2670(85)85062-0Search in Google Scholar

[37] Ioannidis A, Papaconstantinou E. Photocatalytic generation of hydrogen by 1−12 heteropolytungstates with concomitant oxidation of organic-compounds. Inorg Chem. 1985;24:439–41.10.1021/ic00197a037Search in Google Scholar

[38] Papaconstantinou E. Photocatalytic oxidation of organic-compounds using heteropoly electrolytes of molybdenum and tungsten. J Chem Soc-Chem Commun. 1982;12–3.10.1039/c39820000012Search in Google Scholar

[39] Muradov N, T-Raissi A. Solar production of hydrogen using “self-assembled” polyoxometalate photocatalysts. J Solar Energy Eng. 2006;128:326–30.10.1115/1.2212442Search in Google Scholar

[40] Bouchard DA, Hill CL. Catalytic photochemical dehydrogenation of organic substrates by polyoxometalates. J Am Chem Soc. 1985;107:5148–57.10.1021/ja00304a019Search in Google Scholar

[41] Forster J, Rösner B, Khusniyarov MM, Streb C. Tuning the light absorption of a molecular vanadium oxide system for enhanced photooxidation performance. Cheml Commun. 2011;47:3114–6.10.1039/c0cc05536kSearch in Google Scholar PubMed

[42] Errington RJ, Coyle L, Middleton PS, Murphy CJ, Clegg W, Harrington RW. Synthesis and structure of the alkoxido-titanium pentamolybdate (nBu4N)3[(iPrO)TiMo5O18]: an entry into systematic TiMo5 reactivity. J Cluster Sci. 2010;21:503–14.10.1007/s10876-010-0329-3Search in Google Scholar

[43] Errington RJ, Harle G, Clegg W, Harrington RW. Extending the lindqvist family to late 3d transition metals: a rational entry to CoW5 hexametalate chemistry. Eur J Inorg Chem. 2009;2009:5240–6.10.1002/ejic.200900640Search in Google Scholar

[44] Errington RJ, Petkar SS, Horrocks BR, Houlton A, Lie LH, Patole SN. Covalent immobilization of a TiW5 polyoxometalate on derivatized silicon surfaces. Angewandte Chemie Int Ed. 2005;117:1280–3.10.1002/ange.200461065Search in Google Scholar

[45] Errington RJ, Petkar SS, Middleton PS, McFarlane W. Synthesis and reactivity of the methoxozirconium pentatungstate (nBu4N)6[{(µ-MeO)ZrW5O18}2]: insights into proton-transfer reactions, solution dynamics, and assembly of {ZrW5O18}2− building blocks. J Am Chem Soc. 2007;129:12181–96.10.1021/ja0725495Search in Google Scholar PubMed

[46] Filowitz M, Ho RK, Klemperer WG, Shum W. Oxygen-17 nuclear magnetic-resonance spectroscopy of polyoxometalates 1. Sensitivity and resolution. Inorg Chem. 1979;18:93–103.10.1021/ic50191a021Search in Google Scholar

[47] Tucher J, Wu Y, Nye LC, Ivanovic-Burmazovic I, Khusniyarov MM, Streb C. Metal substitution in a Lindqvist polyoxometalate leads to improved photocatalytic performance. Dalton Transact. 2012;41:9938-43.10.1039/c2dt30304cSearch in Google Scholar PubMed

[48] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc. 1999;121:11459–67.10.1021/ja992541ySearch in Google Scholar

[49] Li GS, Zhang DQ, Yu JC. Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater. 2008;20:3983–92.10.1021/cm800236zSearch in Google Scholar

[50] Xi GC, Ye JH. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Cheml Commun. 2010;46:1893–5.10.1039/b923435gSearch in Google Scholar PubMed

[51] Tucher J, Nye LC, Ivanovic-Burmazovic I, Notarnicola A, Streb C. Chemical and photochemical functionality of the first molecular bismuth vanadium oxide. Chem – Eur J. 2012;17:10949–53.10.1002/chem.201200404Search in Google Scholar PubMed

Published Online: 2019-02-15

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2017-0177/html
Scroll to top button