Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Laser-induced breakdown spectroscopy in heritage science

Demetrios AnglosORCID iD: https://orcid.org/0000-0002-5514-9393
  • Corresponding author
  • Department of Chemistry, University of Crete, P.O. Box 2208, 710 03 Heraklion, Crete, Greece
  • Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, GR 711 10 Heraklion, Crete, Greece
  • orcid.org/0000-0002-5514-9393
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-20 | DOI: https://doi.org/10.1515/psr-2018-0005


Laser-induced breakdown spectroscopy (LIBS) is a versatile analytical technique that can be used to probe the elemental composition of materials in diverse types of heritage samples, objects or monuments. The main physical principles underlying LIBS are presented along with analytical figures of merit and technical details concerning instrumentation. In practice, LIBS analysis does not require any sample preparation and the technique is nearly non-invasive, offering close to microscopic spatial resolution and the possibility for depth profile analysis. These features are, at present, available in a number of compact or transportable instruments that offer versatility and enable the use of LIBS for the analysis of a broad variety of objects/samples at diverse locations and this can be highly valuable at several stages of archaeological investigations and conservation campaigns. Representative examples are presented indicating how LIBS has been used to obtain compositional information for materials in the context of archaeological science, art history and conservation.

Keywords: LIBS; laser; elemental analysis; cultural heritage


  • [1]

    Ciliberto E, Spoto G, Modern analytical methods in art and archaeology, chemical analysis, a series of monographs on analytical chemistry and its applications, vol. 155. Winefordner JD, editors. New York: Wiley, 2000.Google Scholar

  • [2]

    Spoto G, Torrisi A, Contino A. Probing archaeological and artistic solid materials by spatially resolved analytical techniques. Chem Soc Rev. 2000;29:429–39. DOI: .CrossrefGoogle Scholar

  • [3]

    Stuart BH. Analytical techniques in materials conservation. New York West Sussex, UK: Wiley, 2007.Google Scholar

  • [4]

    Mantler M, Schreiner M. X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom. 2000;29. DOI: .CrossrefGoogle Scholar

  • [5]

    Dik J, Janssens K, Van Der Snickt G, van der Loeff L, Rickers K, Cotte M. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem. 2008;80:6436–42. DOI: .CrossrefGoogle Scholar

  • [6]

    Dran J-C, Salomon J, Calligaro T, Walter P. Ion beam analysis of art works: 14 years of use in the Louvre. Nucl Instr Meth Phys Res B. 2004;219–220:7–15. DOI: .CrossrefGoogle Scholar

  • [7]

    Schreiner M, Melcher M, Uhlir K. Scanning electron microscopy and energy dispersive analysis: applications in the field of cultural heritage. Anal Bioanal Chem. 2007;387:737–47. DOI: .CrossrefPubMedGoogle Scholar

  • [8]

    Gratuze B, Blet-Lemarquand M, Barrandon JN. Mass spectrometry with laser sampling: A new tool to characterize archaeological materials. J Radioanal Nucl Chem. 2001;247. DOI: .CrossrefGoogle Scholar

  • [9]

    Giussani B, Monticelli D, Rampazzi L. Role of laser ablation –inductively coupled plasma –mass spectrometry in cultural heritage research: A review. Anal Chim Acta. 2009;635:6–21. DOI: .CrossrefPubMedGoogle Scholar

  • [10]

    Kantarelou V, Karydas AG, Sokaras D, Mahfouz L, Qurdab A, Al-Saadi M, et al. In situ scanning micro-XRF analyses of gilded bronze figurines at the national museum of Damascus. J Anal At Spectrom. 2015;30:1787–98. DOI: .CrossrefGoogle Scholar

  • [11]

    Hocquet FP, Calvo Del Castillo H, Cervera Xicotencatl A, Bourgeois C, Oger C, Marchal A, et al. Elemental 2D imaging of paintings with a mobile EDXRF system. Anal Bioanal Chem. 2011;399:3109–16PubMedCrossrefGoogle Scholar

  • [12]

    Romano FP, Pappalardo L, Masini N, Pappalardo G, Rizzo F. The compositional and mineralogical analysis of fired pigments in Nasca pottery from Cahuachi (Peru) by the combined use of the portable PIXE-alpha and portable XRD techniques. Microchem J. 2011;99. DOI: .CrossrefGoogle Scholar

  • [13]

    Cremers DA, Radziemski LJ. Handbook of laser-induced breakdown spectroscopy. New York, USA: Wiley, 2006.Google Scholar

  • [14]

    Musazzi S, Perini U, editors. Laser-induced breakdown spectroscopy. Theory and applications Springer Series in Optical Sciences Vol. 182. Berlin Heidelberg: Springer-Verlag, 2014Google Scholar

  • [15]

    Anglos D. Laser-induced breakdown spectroscopy in art and archaeology. Appl Spectrosc. 2001;55:186A-205A. DOI: .CrossrefGoogle Scholar

  • [16]

    Giakoumaki A, Melessanaki K, Anglos D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects. Anal Bioanal Chem. 2007;387:749–60. DOI: .CrossrefPubMedGoogle Scholar

  • [17]

    Spizzichino V, Fantoni R. Laser induced breakdown spectroscopy in archeometry: a review of its, application and future perspectives. Spectrochim Acta B. 2014;99:201–9. DOI: .CrossrefGoogle Scholar

  • [18]

    Fortes FJ, Cuñat J, Cabalín LM, Laserna JJ. In situ analytical assessment and chemical imaging of historical buildings using a man-portable laser system. Appl Spectrosc. 2007;61:558–64. DOI: .CrossrefPubMedGoogle Scholar

  • [19]

    Agresti J, Mencaglia AA, Siano S. Development and application of a portable LIPS system for characterising copper alloy artefacts. Anal Bioanal Chem. 2009;395:2255–62. DOI: .CrossrefPubMedGoogle Scholar

  • [20]

    Rakovsky J, Cermak P, Musset O, Veis P. A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim Acta B. 2014;101:269–87. DOI: .CrossrefGoogle Scholar

  • [21]

    https://www.nist.gov/pml/atomic-spectra-database Accessed: 18 Oct 2018.

  • [22]

    Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E. New procedure for quantitative elemental analysis by laser -induced plasma spectroscopy. Appl Spectrosc. 1999;53:960–4. DOI: .CrossrefGoogle Scholar

  • [23]

    Scaffidi J, Michael Angel S, Cremers DA. Emission enhancement mechanisms in dual-pulse LIBS. Anal Chem. 2006;78:24–32. DOI: .CrossrefPubMedGoogle Scholar

  • [24]

    Ferretti M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, et al. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser -induced breakdown spectroscopy. Spectrochim Acta B. 2007;62:1512–18. DOI: .CrossrefGoogle Scholar

  • [25]

    Anglos D, Detalle V. Cultural heritage applications of LIBS, chapter 20. In: Musazzi S, Perini U, editors. Laser-induced breakdown spectroscopy, theory and applications, series in optical sciences. vol. 182. Berlin Heidelberg: Springer-Verlag; 2014:531–554.Google Scholar

  • [26]

    Melessanaki K, Mastrogiannidou A, Chlouveraki S, Ferrence SC, Betancourt PP, Anglos D. Analysis of archaeological objects with LMNTI, a new transportable LIBS instrument. In: Κ. Dickmann, C. Fotakis, J. F. Asmus, editors. Proceedings, 5th International Conference Lasers in the Conservation of Artworks in Lasers in the Conservation of Artworks, LACONA V Proceedings, vol. 100. Osnabrueck, Germany: Springer Proceedings in Physics, Sept. 15-18, 2003: 443–51,Google Scholar

  • [27]

    Westlake P, Siozos P, Philippidis A, Apostolaki C, Derham B, Terlixi A, et al. Studying pigments on painted plaster in Minoan, Roman and early Byzantine Crete. A multi-analytical technique approach. Anal Bioanal Chem. 2012;402:1413–32. DOI: .CrossrefGoogle Scholar

  • [28]

    Duchene S, Detalle V, Bruder R, Sirven JB. Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments. Curr Anal Chem. 2010;6:60–5. DOI: .CrossrefGoogle Scholar

  • [29]

    Bertolini A, Carelli G, Francesconi F, Francesconi M, Marchesini L, Marsili P, et al. Modi: a new mobile instrument for in situ double-pulse LIBS analysis. Anal Bioanal Chem. 2006;385:240–7. DOI: .CrossrefGoogle Scholar

  • [30]

    Gaona I, Lucena P, Moros J, Fortes FJ, Guirado S, Serrano J, et al. Evaluating the use of standoff LIBS in architectural heritage : surveying the Cathedral of Malaga. J Anal At Spectrom. 2013;28:810–20. DOI: .CrossrefGoogle Scholar

  • [31]

    Senesi GS, Manzini D, De Pascale O. Application of a laser -induced breakdown spectroscopy handheld instrument to the diagnostic analysis of stone monuments. Appl Geochem. 2018;96:87–91. DOI: .CrossrefGoogle Scholar

  • [32]

    Gronlund R, Lundqvist M, Svanberg S. Remote imaging laser -induced breakdown spectroscopy and remote cultural heritage ablative cleaning. Opt Lett. 2005;30:2882–4. DOI: .CrossrefPubMedGoogle Scholar

  • [33]

    Tzortzakis S, Gray D, Anglos D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring. Opt Lett. 2006;31:1139–41. DOI: .CrossrefPubMedGoogle Scholar

  • [34]

    López-Claros M, Fortes FJ, Laserna JJ. Subsea spectral identification of shipwreck objects using laser -induced breakdown spectroscopy and linear discriminant analysis. J Cult Heritage. 2018;29:75–81. DOI: .CrossrefGoogle Scholar

  • [35]

    Papliaka ZE, Philippidis A, Siozos P, Vakondiou M, Melessanaki K, Anglos D. A multi-technique approach, based on mobile/portable laser instruments, for the in situ pigment characterization of stone sculptures on the island of Crete dating from Venetian and Ottoman period. Heritage Sci. 2016;4:15. DOI: .CrossrefGoogle Scholar

  • [36]

    Bicchieri M, Nardone M, Russo PA, Sodo A, Corsi M, Cristoforetti G, et al. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy. Spectrochim Acta B. 2001;56:915–22. DOI: .CrossrefGoogle Scholar

  • [37]

    Fortes FJ, Cortes M, Simon MD, Cabalin LM, Laserna JJ. Chronocultural sorting of archaeological bronze objects using laser -induced breakdown spectrometry. Anal Chim Acta. 2005;554:136–43. DOI: .CrossrefGoogle Scholar

  • [38]

    Corsi M, Cristoforetti G, Giuffrida M, Hidalgo M, Legnaioli S, Masotti L, et al. Archaeometric analysis of ancient copper artefacts by laser -induced breakdown spectroscopy technique. Microchim Acta. 2005;152:105–11. DOI: .CrossrefGoogle Scholar

  • [39]

    Melessanaki K, Mateo M, Ferrence SC, Betancourt PP, Anglos D. The application of LIBS for the analysis of archaeological ceramic and metal artifacts. Appl Surf Sci. 2002;197–198:156–63. DOI: .CrossrefGoogle Scholar

  • [40]

    Anglos D, Melessanaki K, Zafiropulos V, Gresalfi MJ, Miller JC. Laser-induced breakdown spectroscopy for the analysis of 150-year-old daguerreotypes. Appl Spectrosc. 2002;56:423–32. DOI: .CrossrefGoogle Scholar

  • [41]

    Colao F, Fantoni R, Lazic V, Caneve L, Giardini A, Spizzichino V, et al. “LIBS” as a diagnostic tool during the laser cleaning of copper based alloys: experimental results. J Anal Atom Spectrom. 2004;19:502–4. DOI: .CrossrefGoogle Scholar

  • [42]

    Müller K, Stege H. Evaluation of the analytical potential of laser -induced breakdown spectrometry (LIBS) for the analysis of historical glasses. Archaeometry. 2003;45:421–33. DOI: .CrossrefGoogle Scholar

  • [43]

    Carmona N, Oujja M, Rebollar E, Romich H, Castillejo M. Analysis of corroded glasses by laser induced breakdown spectroscopy. Spectrochim Acta B. 2005;60:1155–62. DOI: .CrossrefGoogle Scholar

  • [44]

    Senesi GS, Nicolodelli G, Milorim DMBP, De Pascale O. Depth profile investigations of surface modifications of limestone artifacts by laser -induced breakdown spectroscopy. Environ Earth Sci. 2017;76:565. DOI: .CrossrefGoogle Scholar

  • [45]

    Anzano JM, Villoria MA, Gornushkin IB, Smith BW, Winefordner JD. Laser-induced plasma spectroscopy for characterization of archaeological material. Can J Anal Sci Spectrosc. 2002;47:134–40.Google Scholar

  • [46]

    Maravelaki-Kalaitzaki PV, Anglos D, Kylikoglou V, Zafiropulos V. Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim Acta B. 2001;56:887. DOI: .CrossrefGoogle Scholar

  • [47]

    Lazic V, Fantoni R, Colao F, Santagata A, Morona A, Spizzichino V. Quantitative laser induced breakdown spectroscopy analysis of ancient marbles and corrections for the variability of plasma parameters and of ablation rate. J Anal Atom Spectrom. 2004;19:429–36. DOI: .CrossrefGoogle Scholar

  • [48]

    Colao F, Fantoni R, Lazic V, Spizzichino V. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks - application on multi-layered ceramics and copper based alloys. Spectrochim Acta B. 2002;57:1219–34. DOI: .CrossrefGoogle Scholar

  • [49]

    Lopez AJ, Nicolas G, Mateo MP, Ramil A, Pinon V, Yanez A. LIPS and linear correlation analysis applied to the classification of Roman pottery Terra Sigillata. Appl Phys A. 2006;83:695–8. DOI: .CrossrefGoogle Scholar

  • [50]

    Anzano J, Gutierrez J, Villoria M. Direct determination of aluminum in archaeological clays by laser -induced breakdown spectroscopy. Anal Lett. 2005;38:1957–65. DOI: .CrossrefGoogle Scholar

  • [51]

    Erdem A, Çilingiroğlu A, Giakoumaki A, Castanys M, Kartsonaki E, Fotakis C, et al. Characterization of iron age pottery from eastern Turkey by laser -induced breakdown spectroscopy (LIBS). J Arch Sci. 2008;35:2486–94. DOI: .CrossrefGoogle Scholar

  • [52]

    Harmon RS, DeLucia FC, McManus CE, McMillan NJ, Jenkins TF, Walsh ME, et al. Laser-induced breakdown spectroscopy - an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl Geochem. 2006;21:730–47. DOI: .CrossrefGoogle Scholar

  • [53]

    Bassel L, Motto-Ros V, Trichard F, Pelascini F, Ammari F, Chapoulie R, et al. Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls. Environ Sci Pollut Res. 2017;24:2197–204. DOI: .CrossrefGoogle Scholar

  • [54]

    Samek O, Beddows DCS, Telle HH, Kaiser J, Liska M, Caseres JO, et al. Quantitative laser -induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochim Acta B. 2001;56:865–75. DOI: .CrossrefGoogle Scholar

  • [55]

    Rusak DA, Marsico RM, Taroli BL. Using laser-induced breakdown spectroscopy to assess preservation quality of archaeological bones by measurement of Calcium-to-Fluorine ratios. Appl Spectrosc. 2011;65:1193. DOI: .CrossrefPubMedGoogle Scholar

  • [56]

    Suliyanti MM, Sardy S, Kusnowo A, Pardede M, Hedwig R, Kurniawan KH, et al. Preliminary analysis of C and H in a “Sangiran” fossil using laser -induced plasma at reduced pressure. J Appl Phys. 2005;98:093307. DOI: .CrossrefGoogle Scholar

  • [57]

    Dolgin B, Chen Y, Bulatov V, Schechter I. Use of LIBS for rapid characterization of parchment. Anal Bioanal Chem. 2006;386:1535–41. DOI: .CrossrefPubMedGoogle Scholar

  • [58]

    Oujja M, Sanz M, Agua F, Conde JF, García-Heras M, Dávila A, et al. Multianalytical characterization of late Roman glasses including nanosecond and femtosecond laser induced breakdown spectroscopy. J Anal At Spectrom. 2015;30:1590–9. DOI: .CrossrefGoogle Scholar

  • [59]

    Cáceres JO, Pelascini F, Motto-Ros V, Moncayo S, Trichard F, Panczer G, et al. Megapixel multi-elemental imaging by laser-induced breakdown spectroscopy, a technology with considerable potential for paleoclimate studies. Sci Rep. 2017;7:5080. DOI: .CrossrefPubMedGoogle Scholar

  • [60]

    Hausmann N, Siozos P, Lemonis A, Colonese AC, Robson HK, Anglos D. Elemental mapping of Mg/Ca intensity ratios in marine mollusc shells using laser -induced breakdown spectroscopy. J Anal At Spectrom. 2017;32:1467–72. DOI: .CrossrefGoogle Scholar

  • [61]

    Moncayo S, Manzoor S, Ugidos T, Navarro-Villoslada F, Caceres JO. Discrimination of human bodies from bones and teeth remains by laser induced breakdown spectroscopy and neural networks. Spectrochim Acta B. 2014;101:21–5. DOI: .CrossrefGoogle Scholar

About the article

Published Online: 2019-04-20

Citation Information: Physical Sciences Reviews, Volume 4, Issue 7, 20180005, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0005.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in