Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

An overview of tools, software, and methods for natural product fragment and mass spectral analysis

Aurélien F. A. Moumbock
  • Corresponding author
  • Albert-Ludwigs-Universität Freiburg, Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fidele Ntie-Kang
  • Corresponding author
  • Department of Chemistry, University of Buea, P. O. Box 63 Buea, Buea, Cameroon
  • Department of Pharmaceutical Chemistry, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle (Saale), Germany
  • Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6, Dejvice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergi H. Akone
  • Faculty of Science, Department of Chemistry, University of Douala, P. O. Box 24157, Douala, Cameroon
  • Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jianyu Li
  • Albert-Ludwigs-Universität Freiburg, Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mingjie Gao
  • Albert-Ludwigs-Universität Freiburg, Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kiran K. Telukunta
  • Albert-Ludwigs-Universität Freiburg, Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
  • IT, International Solar Energy Society eV, Wiesentalstr 50, Freiburg, Baden-Württemberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Günther
  • Albert-Ludwigs-Universität Freiburg, Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-28 | DOI: https://doi.org/10.1515/psr-2018-0126

Abstract

One major challenge in natural product (NP) discovery is the determination of the chemical structure of unknown metabolites using automated software tools from either GC–mass spectrometry (MS) or liquid chromatography–MS/MS data only. This chapter reviews the existing spectral libraries and predictive computational tools used in MS-based untargeted metabolomics, which is currently a hot topic in NP structure elucidation. We begin by focusing on spectral databases and the general workflow of MS annotation. We then describe software and tools used in MS, particularly those used to predict fragmentation patterns, mass spectral classifiers, and tools for fragmentation trees analysis. We then round up the chapter by looking at more advanced approaches implemented in tools for competitive fragmentation modeling and quantum chemical approaches.

Keywords: cheminformatics; fragment analysis; drug discovery; natural products; software

References

  • [1]

    Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics. Curr Protoc Mol Biol. 2012;30:1–24.Google Scholar

  • [2]

    Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27:1897–905.PubMedCrossrefGoogle Scholar

  • [3]

    Vinayavekhin N, Saghatelian A. Untargeted metabolomics. Curr Protoc Mol Biol. 2010;30:1–24.PubMedGoogle Scholar

  • [4]

    Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev. 2010;2:23–60.CrossrefPubMedGoogle Scholar

  • [5]

    Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv. 2018;8:22335–50.CrossrefGoogle Scholar

  • [6]

    Koyama N, Tomoda H. MS network-based screening for new antibiotics discovery. J Antibiot. 2019;72:54–6.PubMedCrossrefGoogle Scholar

  • [7]

    Gowda GA, Djukovic D. Overview of mass spectrometry-based metabolomics: opportunities and challenges. Methods Mol Biol. 2014;1198:3–12.PubMedCrossrefGoogle Scholar

  • [8]

    Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.CrossrefPubMedGoogle Scholar

  • [9]

    Scheubert K, Hufsky F, Böcker S. Computational mass spectrometry for small molecules. J Cheminform. 2013;5:12.PubMedCrossrefGoogle Scholar

  • [10]

    Vinaix M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes S. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Analyt Chem. 2016;78:23–35.CrossrefGoogle Scholar

  • [11]

    Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt Chem. 2015;69:52–61.PubMedCrossrefGoogle Scholar

  • [12]

    Hufsky F, Scheubert K, Böcker S. Computational mass spectrometry for small-molecule fragmentation. Trends Analyt Chem. 2014;53:41–8.CrossrefGoogle Scholar

  • [13]

    Kerber A, Meringer M, Rücker C. CASE via MS: ranking structure candidates by mass spectra. Croatica Chemica Acta. 2006;79:449–64.Google Scholar

  • [14]

    Su BH, Shen MY, Harn YC, Wang SY, Schurz A, Lin C, et al. An efficient computer-aided structural elucidation strategy for mixtures using an iterative dynamic programming algorithm. J Cheminform. 2017;9:57.CrossrefPubMedGoogle Scholar

  • [15]

    Smith DH, Gray NA, Nourse JG, Crandell CW. Analytica chimica acta the dendral project: recent advances in computer- assisted structure elucidation. Anal Chim Acta. 1981;133:471–97.CrossrefGoogle Scholar

  • [16]

    Gray NA. Chemometrics and intelligent laboratory systems dendral and meta-dendral - the myth and the reality. Chemom Intell Lab Syst. 1988;5:11–32.CrossrefGoogle Scholar

  • [17]

    Djerassi C, Smith DH, Crandell CW, Gray NA, Nourse JG, Lindley MR The DENDRAL project: computational aids to natural products structure elucidation. Pure Appl Chem. 1982;54:2425–42.CrossrefGoogle Scholar

  • [18]

    Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. Artificial intelligence DENDRAL: a case study of the first expert system for scientific hypothesis formation. Artif Intell. 1993;61:209–61.CrossrefGoogle Scholar

  • [19]

    Nishioka T, Kasama T, Kinumi T, Makabe H, Matsuda F, Miura D, et al. Winners of CASMI2013: automated tools and challenge data. Mass Spectrom. 2014;3:S0039.CrossrefGoogle Scholar

  • [20]

    Nikolić D. CASMI 2016: a manual approach for dereplication of natural products using tandem mass spectrometry. Phytochem Lett. 2017;21:292–6.PubMedCrossrefGoogle Scholar

  • [21]

    Schymanski EL, Ruttkies C, Krauss M, Brouard C, Kind T, Dührkop K, et al. Critical assessment of small molecule identification 2016: automated methods. J Cheminform. 2017;9:22.PubMedCrossrefGoogle Scholar

  • [22]

    Hufsky F, Böcker S. Mining molecular structure databases: identification of small molecules based on fragmentation mass spectrometry data. Mas Spectrom Rev. 2017;36:624–33.CrossrefGoogle Scholar

  • [23]

    Hufsky F, Scheubert K, Böcker S. New kids on the block: novel informatics methods for natural product discovery. Nat Prod Rep. 2014;31:807–17.CrossrefPubMedGoogle Scholar

  • [24]

    Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8:318.Google Scholar

  • [25]

    Misra BB, van der Hooft JJ. Updates in metabolomics tools and resources: 2014–2015. Electrophoresis. 2016;37:86–110.CrossrefPubMedGoogle Scholar

  • [26]

    Gu WY, Li N, Leung EL, Zhou H, Luo GA, Liu L, et al. Metabolites software-assisted flavonoid hunting in plants using ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry. Molecules. 2015;20:3955–71.CrossrefPubMedGoogle Scholar

  • [27]

    Dunn WB, Erban A, Weber RJ, Creek DJ, Brown M, Breitling R, et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics. 2013;9:44–66.CrossrefGoogle Scholar

  • [28]

    Lang G, Mayhudin NA, Mitova MI, Sun L, van der Sar S, Blunt JW, et al. Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod. 2008;71:1595–9.PubMedCrossrefGoogle Scholar

  • [29]

    Bugni TS, Harper MK, McCullochand MW, Whitson EL. Natural product chemistry for drug discovery. London, UK: Royal Society of Chemistry; 2010. p. 272–98.Google Scholar

  • [30]

    Li Y, Chi H, Wang LH, Wang HP, Fu Y, Yuan ZF, et al. Speeding up tandem mass spectrometry based database searching by peptide and spectrum indexing. Rapid Commun Mass Spectrom. 2010;24:807–14.CrossrefPubMedGoogle Scholar

  • [31]

    Craig R, Beavis RC. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom. 2003;17:2310–6.PubMedCrossrefGoogle Scholar

  • [32]

    Fenyö D, Beavis RC. A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem. 2003;75:768–74.PubMedCrossrefGoogle Scholar

  • [33]

    Sonego P, Kocsor A, Pongor S. ROC analysis: applications to the classification of biological sequences and 3D structures. Brief Bioinform. 2008;9:198–209.CrossrefPubMedGoogle Scholar

  • [34]

    In MarinLit; Department of Chemistry, University of Canterbury. http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml, 2013.

  • [35]

    Laatsch H. Antibase, a data base for rapid dereplication and strcuture determination of microbial natural products. Weinheim, Germany: Wiley-VCH; 2013.Google Scholar

  • [36]

    DN P. Chapman and Hall Chemical Database 2013. Dictionary of Natural Products.Google Scholar

  • [37]

    Bouslimani A, Sanchez LM, Garg N, Dorrestein PC. Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep. 2014;31:718–29.CrossrefPubMedGoogle Scholar

  • [38]

    Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Anal Chem. 2016;78:23–35.CrossrefGoogle Scholar

  • [39]

    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017;46:608–17.Google Scholar

  • [40]

    Wishart DS. Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol. 2008;19:482–93.CrossrefGoogle Scholar

  • [41]

    Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.CrossrefGoogle Scholar

  • [42]

    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrum. 2010;45:703–14.CrossrefGoogle Scholar

  • [43]

    Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81:10038–48.PubMedCrossrefGoogle Scholar

  • [44]

    Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, et al. GMD@ CSB. DB: the Golm metabolome database. Bioinformatics. 2004;21:1635–8.PubMedGoogle Scholar

  • [45]

    Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44–50.CrossrefPubMedGoogle Scholar

  • [46]

    Wolfender J-L, Nuzillard J-M, van der Hooft JJ, Renault J-H, Bertrand S. Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem. 2019;91:704–42.CrossrefPubMedGoogle Scholar

  • [47]

    Peironcely JE, Rojas-Chertó M, Fichera D, Reijmers T, Coulier L, Faulon J-L, et al. OMG: open molecule generator. J Cheminform. 2012;4:21.PubMedCrossrefGoogle Scholar

  • [48]

    Gugisch R, Kerber A, Kohnert A, Laue R, Meringer M, Rücker C, et al. MOLGEN 5.0, a molecular structure generator. Adv Math Chem Appl. 2015;26:113–38.Google Scholar

  • [49]

    Gray NA, Carhart RE, Lavanchy A, Smith DH, Varkony T, Buchanan BG, et al. Computerized mass spectrum prediction and ranking. Anal Chem. 1980;52:1095–102.CrossrefGoogle Scholar

  • [50]

    Gasteiger J, Hanebeck W, Schulz KP. Prediction of mass spectra from structural information. J Chem Inf Model. 1992;32:264–71.CrossrefGoogle Scholar

  • [51]

    Kerber A, Laue R, Meringer M, Varmuza K. MOLGEN-MS: evaluation of low resolution electron impact mass spectra with MS classification and exhaustive structure generation. Adv Mass Spectrom. 2001;15:939–40.Google Scholar

  • [52]

    Chen H, Fan B, Xia H, Petitjean M, Yuan S, Panaye A, et al. MASSIS: a mass spectrum simulation system. 1. Principle and method. Eur J Mass Spectrom. 2003;9:175–86.CrossrefGoogle Scholar

  • [53]

    Chen H, Fan B, Petitjean M, Panaye A, Doucet J-P, Li F, et al. MASSIS: a mass spectrum simulation system. 2: procedures and performance. Eur J Mass Spectrom. 2003;9:445–57.CrossrefGoogle Scholar

  • [54]

    Fan B, Chen H, Petitjean M, Panaye A, Doucet J, Xia H, et al. New strategy of mass spectrum simulation based on reduced and concentrated knowledge databases. Spectrosc Lett. 2005;38:145–70.CrossrefGoogle Scholar

  • [55]

    Schymanski EL, Meringer M, Brack W. Matching structures to mass spectra using fragmentation patterns: are the results as good as they look? Anal Chem. 2009;81:3608–17.CrossrefPubMedGoogle Scholar

  • [56]

    Zhou J, Weber RJ, Allwood JW, Mistrik R, Zhu Z, Ji Z, et al. HAMMER: automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics. 2014;30:581–3.CrossrefPubMedGoogle Scholar

  • [57]

    Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, et al. Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem. 2016;88:7946–58.CrossrefPubMedGoogle Scholar

  • [58]

    Vaniya A, Samra SN, Palazoglu M, Tsugawa H, Fiehn O. Using MS-FINDER for identifying 19 natural products in the CASMI 2016 contest. Phytochem Lett. 2017;21:306–12.CrossrefGoogle Scholar

  • [59]

    Domingo-Almenara X, Montenegro-Burke JR, Benton HP, Siuzdak G. Annotation: a computational solution for streamlining metabolomics analysis. Anal Chem. 2018;90:480–9.CrossrefPubMedGoogle Scholar

  • [60]

    Hill AW, Mortishire-Smith RJ. Automated assignment of high-resolution collisionally activated dissociation mass spectra using a systematic bond disconnection approach. Rapid Commun Mass Spectrom. 2005;19:3111–8.CrossrefGoogle Scholar

  • [61]

    Heinonen M, Rantanen A, Mielikäinen T, Kokkonen J, Kiuru J, Ketola RA, et al. FiD: a software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun Mass Spectrom. 2008;22:3043–52.CrossrefPubMedGoogle Scholar

  • [62]

    Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010;11:148.CrossrefGoogle Scholar

  • [63]

    Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3.CrossrefPubMedGoogle Scholar

  • [64]

    Wang Y, Kora G, Bowen BP, Pan C. MIDAS: a database-searching algorithm for metabolite identification in metabolomics. Anal Chem. 2014;86:9496–503.PubMedCrossrefGoogle Scholar

  • [65]

    Wang Y, Wang X, Zeng X. MIDAS-G: a computational platform for investigating fragmentation rules of tandem mass spectrometry in metabolomics. Metabolomics. 2017;13:116.CrossrefGoogle Scholar

  • [66]

    Ridder L, van der Hooft JJ, Verhoeven S. Automatic compound annotation from mass spectrometry data using MAGMa. Mass Spectrom. 2014;3:S0033.CrossrefGoogle Scholar

  • [67]

    Verdegem D, Lambrechts D, Carmeliet P, Ghesquière B. Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization. Metabolomics. 2016;12:98.CrossrefGoogle Scholar

  • [68]

    Hewlins MJE. Computers in mass spectrometry Academic Press, London, 1978.265 pp. $9.80. ISBN 0-12-168750-3. Biomed Biol Mass Spec. 1979 3;6:III–IV.Google Scholar

  • [69]

    Varmuza K. Pattern recognition in analytical chemistry. Anal Chim Acta. 1980;122:227–40.CrossrefGoogle Scholar

  • [70]

    Varmuza K, Werther W. Mass spectral classifiers for supporting systematic structure elucidation. J Chem Inf Comput Sci. 1996;36:323–33.CrossrefGoogle Scholar

  • [71]

    Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:fingerID. Proc Natl Acad Sci USA. 2015;112:12580–5.CrossrefGoogle Scholar

  • [72]

    Stein SE. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom. 1999;10:770–81.CrossrefGoogle Scholar

  • [73]

    Ma Y, Kind T, Yang D, Leon C, Fiehn O. MS2Analyzer: a software for small molecule substructure annotations from accurate tandem mass spectra. Anal Chem. 2014;86:10724–31.CrossrefPubMedGoogle Scholar

  • [74]

    Heinonen M, Shen H, Zamboni N, Rousu J. Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics. 2012;28:2333–41.PubMedCrossrefGoogle Scholar

  • [75]

    Laponogov I, Sadawi N, Galea D, Mirnezami R, Veselkov KA. ChemDistiller: an engine for metabolite annotation in mass spectrometry. Bioinformatics. 2018;34:2096–102.PubMedCrossrefGoogle Scholar

  • [76]

    Qiu F, Lei Z, Sumner LW. MetExpert: an expert system to enhance gas chromatography‒mass spectrometry-based metabolite identifications. Anal Chim Acta. 2018;1037:316–26.CrossrefPubMedGoogle Scholar

  • [77]

    Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10:755–8.PubMedCrossrefGoogle Scholar

  • [78]

    Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019. doi:.CrossrefPubMedGoogle Scholar

  • [79]

    Mallard WG. AMDIS in the chemical weapons convention. Anal Bioanal Chem. 2014;406:5075–86.PubMedCrossrefGoogle Scholar

  • [80]

    Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI: fingerID. Proc Natl Acad Sci USA. 2015;112:12580–5.CrossrefGoogle Scholar

  • [81]

    Depke T, Franke R, Broenstrup M. ClusMSID: an R package for similarity-based clusterering of tandem mass spectra to aid feature annotation in metabolomics. Bioinformatics. 2019. doi:.CrossrefGoogle Scholar

  • [82]

    Ludwig M, Hufsky F, Elshamy S, Böcker S. Finding characteristic substructures for metabolite classes. German Conf Bioinform. 2012. doi:.CrossrefGoogle Scholar

  • [83]

    Rojas-Cherto M, Peironcely JE, Kasper PT, van der Hooft JJ, de Vos RC, Vreeken R, et al. Metabolite identification using automated comparison of high-resolution multistage mass spectral trees. Anal Chem. 2012;84:5524–34.CrossrefPubMedGoogle Scholar

  • [84]

    Böcker S, Letzel MC, Lipták Z, Pervukhin A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics. 2009;25:218–24.CrossrefPubMedGoogle Scholar

  • [85]

    Aguilar-Mogas A, Sales-Pardo M, Navarro M, Guimerà R, Yanes O. iMet: a network-based computational tool to assist in the annotation of metabolites from tandem mass spectra. Anal Chem. 2017;89:3474–82.CrossrefPubMedGoogle Scholar

  • [86]

    Horner JA, Thakur RA, Mistrik R. PIF: precursor ion fingerprinting – searching for a structurally diagnostic fragment using combined targeted and data dependent MSn. San Jose, CA, USA: Thermo Fisher Scientific, 2008.Google Scholar

  • [87]

    Kangas LJ, Metz TO, Isaac G, Schrom BT, Ginovska-Pangovska B, Wang L, et al. In silico identification software (ISIS): a machine learning approach to tandem mass spectral identification of lipids. Bioinformatics. 2012;28:1705–13.PubMedCrossrefGoogle Scholar

  • [88]

    Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42:W94–9.PubMedCrossrefGoogle Scholar

  • [89]

    Grimme S. QCEIMS—a general program to compute EI-MS with quantum chemistry, version 2.17. Bonn: University of Bonn, 2013.Google Scholar

  • [90]

    Grimme S. Towards first principles calculation of electron impact mass spectra of molecules. Angew Chem Int Ed Engl. 2013;52:6306–12.PubMedCrossrefGoogle Scholar

  • [91]

    Ásgeirsson V, Bauer CA, Grimme S. Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules. Chem Sci. 2017;8:4879–95.CrossrefPubMedGoogle Scholar

  • [92]

    Janesko BG, Li L, Mensing B. Quantum chemical fragment precursor tests: accelerating de novo annotation of tandem mass spectra. Anal Chim Acta. 2017;995:52–64.PubMedCrossrefGoogle Scholar

  • [93]

    Alex A, Harvey S, Parsons T, Pullen FS, Wright P, Riley J-A. Can density functional theory (DFT) be used as an aid to a deeper understanding of tandem mass spectrometric fragmentation pathways? Rapid Commun Mass Spectrom. 2009;23:2619–27.CrossrefPubMedGoogle Scholar

  • [94]

    Cautereels J, Claeys M, Geldof D, Blockhuys F. Quantum chemical mass spectrometry: ab initio prediction of electron ionization mass spectra and identification of new fragmentation pathways. J Mass Spectrom. 2016;51:602–14.PubMedCrossrefGoogle Scholar

  • [95]

    Cautereels J, Blockhuys F. Quantum chemical mass spectrometry: verification and extension of the mobile proton model for histidine. J Am Soc Mass Spectrom. 2017;28:1227–35.CrossrefPubMedGoogle Scholar

  • [96]

    Schüler J-A, Neumann S, Müller-Hannemann M, Brandt W. ChemFrag: chemically meaningful annotation of fragment ion mass spectra. J Mass Spectrom. 2018;53:1104–15.PubMedCrossrefGoogle Scholar

  • [97]

    Neese F. ORCA—an ab initio, density functional and semiempirical program package, Verion 2.9 (Rev. 0). Germany: Max Planck Institute for Bioinorganic Chemistry, 2011.Google Scholar

  • [98]

    Neese F. The ORCA program system. WIREs Comput Mol Sci. 2012;2:73–8.CrossrefGoogle Scholar

  • [99]

    Frauenheim T DFTB + (Density Functional based Tight Binding), 2008. http://www.dftb.org/.

  • [100]

    Thiel W. MNDO2005 version 7.0,. Mülheim, Germany: MPI für Kohlenforschung, 2005Google Scholar

  • [101]

    Valli M, Russo HM, Pilon AC, Pinto MEF, Dias NB, Freire RT, et al. Computational methods for NMR and MS for structure elucidation I: software for basic NMR. Phys Sci Rev. 2018.DOI: 10.1515/psr-2018-0108.Google Scholar

  • [102]

    Valli M, Russo HM, Pilon AC, Pinto MEF, Dias NB, Freire RT, et al. Computational methods for NMR and MS for structure elucidation II: database resources and advanced methods. Phy Sci Rev. 2019.DOI: 10.1515/psr-2018-0167.Google Scholar

  • [103]

    Bitchagno GTM, Fobofou SAT, et al. Computational methods for NMR and MS for structure elucidation III: more advanced approaches. Phys Sci Rev. 2019.DOI: 10.1515/psr-2018-0109.Google Scholar

About the article

Aurélien F. A. Moumbock, Fidele Ntie-Kang, and Sergi H. Akone These authors contributed equally and could be considered as joint first authors.


Published Online: 2019-06-28


Citation Information: Physical Sciences Reviews, Volume 4, Issue 9, 20180126, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0126.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in