Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 31, 2019

Dynamical magnetoelectric phenomena of skyrmions in multiferroics

  • Masahito Mochizuki EMAIL logo
From the journal Physical Sciences Reviews

Abstract

Magnetic skyrmions, nanoscopic spin vortices carrying a quantized topological number in chiral-lattice magnets, are recently attracting great research interest. Although magnetic skyrmions had been observed only in metallic chiral-lattice magnets such as B20 alloys in the early stage of the research, their realization was discovered in 2012 also in an insulating chiral-lattice magnet Cu2OSeO3. A characteristic of the insulating skyrmions is that they can host multiferroicity, that is, the noncollinear magnetization alignment of skyrmion induces electric polarizations in insulators with a help of the relativistic spin-orbit interaction. It was experimentally confirmed that the skyrmion phase in Cu2OSeO3 is indeed accompanied by the spin-induced ferroelectricity. The resulting strong magnetoelectric coupling between magnetizations and electric polarizations can provide us with a means to manipulate and activate magnetic skyrmions by application of electric fields. This is in sharp contrast to skyrmions in metallic systems, which are driven through injection of electric currents. The magnetoelectric phenomena specific to the skyrmion-based multiferroics are attracting intensive research interest, and, in particular, those in dynamical regime are widely recognized as an issue of vital importance because their understanding is crucial both for fundamental science and for technical applications. In this article, we review recent studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulating chiral-lattice magnet Cu2OSeO3. It is argued that the multiferroic skyrmions show unique resonant excitation modes of coupled magnetizations and polarizations, so-called electromagnon excitations, which can be activated both magnetically with a microwave magnetic field and electrically with a microwave electric field. The interference between these two activation processes gives rise to peculiar phenomena in the gigahertz regime. As its representative example, we discuss a recent theoretical prediction of unprecedentedly large nonreciprocal directional dichroism of microwaves in the skyrmion phase of Cu2OSeO3. This phenomenon can be regarded as a one-way window effect on microwaves, that is, the extent of microwave absorption changes significantly when its incident direction is reversed. This dramatic effect was indeed observed by subsequent experiments. These studies demonstrated that the multiferroic skyrmions can be a promising building block for microwave devices.

Acknowledgements

This work was supported by JSPS KAKENHI (Grants No. 17H02924, No. 16H06345, and No. 19H00864), Waseda University Grant for Special Research Projects (Project Nos. 2018K-257 and 2019C-253), and JST PRESTO (Grant No. JPMJPR132A).

References

[1] Nagaosa N, Tokura Y. Emergent electromagnetism in solids. Phys Scr. 2012;T146:014020–014020. DOI:10.1088/0031-8949/2012/T146/014020.014020.Search in Google Scholar

[2] Mochizuki M. Current-driven dynamics of skyrmions. In: Seidel Jan, editor. Topological structures in ferroic materials domain walls, skyrmions and vortices, 1st ed. Springer Series in Materials Science Vol. 228. Switzerland: Springer International Publishing, 2016:55–81.10.1007/978-3-319-25301-5_3Search in Google Scholar

[3] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003;426:55–8. DOI:10.1038/nature02018.55.Search in Google Scholar PubMed

[4] Katsura H, Nagaosa N, Balatsky AV. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett. 2005;95. DOI:10.1103/PhysRevLett.95.057205.057205.Search in Google Scholar PubMed

[5] Mostovoy M. Ferroelectricity in spiral magnets. Phys Rev Lett. 2006;96. DOI:10.1103/PhysRevLett.96.067601.067601.Search in Google Scholar PubMed

[6] Kimura T. Spiral magnets as magnetoelectrics. Annu Rev Mater Res. 2007;37:387–413. DOI:10.1146/annurev.matsci.37.052506.084259.Search in Google Scholar

[7] Pfleiderer C. Surfaces get hairy. Nat Phys. 2011;7:673–74. DOI:10.1038/nphys2081.Search in Google Scholar

[8] Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nat Nanotech. 2013;8:899–911. DOI:10.1038/nnano.2013.243.Search in Google Scholar PubMed

[9] Fert A, Cros V, Sampaio J. Skyrmions on the track. Nat Nanotech. 2013;8:152–6. DOI:10.1038/nnano.2013.29.Search in Google Scholar PubMed

[10] Seki S, Mochizuki M. Skyrmions in magnetic materials, 1st ed. SpringerBriefs in Physics. Switzerland: Springer International Publishing, 2015.10.1007/978-3-319-24651-2_1Search in Google Scholar

[11] Mochizuki M, Seki S. Dynamical magnetoelectric phenomena of multiferroic skyrmions. J Phys: Condens Matter. 2015;27:503001–503001. DOI:10.1088/0953-8984/27/50/503001.Search in Google Scholar

[12] Skyrme TH. A non-linear field theory. Proc R Soc London Ser A Math Phys Sci. 1961;260:127–38. DOI:10.1098/rspa.1961.0018.127.Search in Google Scholar

[13] Skyrme TH. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556–69. DOI:10.1016/0029-5582(62)90775-7.556.Search in Google Scholar

[14] Bogdanov AN, Yablonskii DA. Thermodynamically stable “vortices” in magnetically ordered crystals. Sov Phys JETP. 1989;68:101–3.Search in Google Scholar

[15] Bogdanov A, Hubert A. Thermodynamically stable magnetic vortex states in magnetic crystals. J Magn Magn Mater. 1994;138:255–69. DOI:10.1016/0304-8853(94)90046-9.Search in Google Scholar

[16] Rößler UK, Bogdanov AN, Pfleiderer C. Spontaneous skyrmion ground states in magnetic metals. Nature. 2006;442:797–801. DOI:10.1038/nature05056.Search in Google Scholar PubMed

[17] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P. Skyrmion lattice in a chiral magnet. Science. 2009;323:915–9. DOI:10.1126/science.1166767.915.Search in Google Scholar PubMed

[18] Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y, et al. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465:901–4. DOI:10.1038/nature09124.901.Search in Google Scholar PubMed

[19] Pappas C, Lelièvre-Berna E, Falus P, Bentley PM, Moskvin E, Grigoriev S, Fouquet P, Farago B. Chiral paramagnetic Skyrmion-like phase in MnSi. Phys Rev Lett. 2009;102. DOI:10.1103/PhysRevLett.102.197202.197202.Search in Google Scholar PubMed

[20] Pfleiderer C, et al. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds. J Phys: Condensed Matter. 2010;22:164207–164207. DOI:10.1088/0953-8984/22/16/164207.164207.Search in Google Scholar PubMed

[21] Münzer W, et al. Skyrmion lattice in the doped semiconductorFe1−xCoxSi. Phys Rev B. 2010;81. DOI:10.1103/PhysRevB.81.041203.041203 (R).Search in Google Scholar

[22] Adams T, et al. Long-range crystalline nature of the Skyrmion lattice in MnSi. Phys Rev Lett. 2011;107. DOI:10.1103/PhysRevLett.107.217206.217206.Search in Google Scholar

[23] Grigoriev SV, et al. Chiral properties of structure and magnetism inMn1–xFexGeCompounds: when the left and the right are fighting, who wins? Phys Rev Lett. 2013;110. DOI:10.1103/PhysRevLett.110.207201.207201.Search in Google Scholar

[24] Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y, et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2010:106–109. DOI:10.1038/nmat2916 10.Search in Google Scholar

[25] Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park HS, Tokura Y, et al. Real-space observation of Skyrmion lattice in helimagnet MnSi thin samples. Nano Lett. 2012;12:1673–77. DOI:10.1021/nl300073m.1673.Search in Google Scholar

[26] Shibata K, Yu XZ, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y, et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling. Nat Nanotech. 2013;8:723–8. DOI:10.1038/nnano.2013.174.723.Search in Google Scholar

[27] Morikawa D, Shibata K, Kanazawa N, Yu XZ, Tokura Y. Crystal chirality and skyrmion helicity in MnSi and (Fe, Co)Si as determined by transmission electron microscopy. Phys Rev B. 2013;88. DOI:10.1103/PhysRevB.88.024408.024408.Search in Google Scholar

[28] Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chemi Solids. 1958;4:241–55. DOI:10.1016/0022-3697(58)90076-3.241.Search in Google Scholar

[29] Moriya T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys Rev. 1960;120:91–8. DOI:10.1103/PhysRev.120.91.91.Search in Google Scholar

[30] Binz B, Vishwanath A. Chirality induced anomalous-Hall effect in helical spin crystals. Phys B: Conden Matter. 2008;403:1336–40. DOI:10.1016/j.physb.2007.10.136.1336.Search in Google Scholar

[31] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P, et al. Topological hall effect in the APhase of MnSi. Phys Rev Lett. 2009;102. DOI:10.1103/PhysRevLett.102.186602.186602.Search in Google Scholar PubMed

[32] Zang J, Mostovoy M, Han JH, Nagaosa N. Dynamics of Skyrmion crystals in metallic thin films. Phys Rev Lett. 2011;107. DOI:10.1103/PhysRevLett.107.136804.136804.Search in Google Scholar PubMed

[33] Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y, et al. Large topological hall effect in a short-period helimagnet MnGe. Phys Rev Lett. 2011;106. DOI:10.1103/PhysRevLett.106.156603.156603.Search in Google Scholar PubMed

[34] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A, et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat Phys. 2012;8:301–4. DOI:10.1038/nphys2231.301.Search in Google Scholar

[35] Jonietz F, et al. Spin transfer torques in MnSi at ultralow current densities. Science. 2010;330:1648–51. DOI:10.1126/science.1195709.1648.Search in Google Scholar PubMed

[36] Yu XZ, Kanazawa N, Zhang WZ, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y, et al. Skyrmion flow near room temperature in an ultralow current density. Nat Commun. 2012:988. DOI:10.1038/ncomms1990 3.Search in Google Scholar PubMed

[37] Everschor K, Garst M, Duine RA, Rosch A. Current-induced rotational torques in the skyrmion lattice phase of chiral magnets. Phys Rev B. 2011;84. DOI:10.1103/PhysRevB.84.064401.064401.Search in Google Scholar

[38] Everschor K, Garst M, Binz B, Jonietz F, Mühlbauer S, Pfleiderer C, Rosch A, et al. Rotating skyrmion lattices by spin torques and field or temperature gradients. Phys Rev B. 2012;86. DOI:10.1103/PhysRevB.86.054432.054432.Search in Google Scholar

[39] Iwasaki J, Mochizuki M, Nagaosa N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat Commun. 2013;4. DOI:10.1038/ncomms2442.1463.Search in Google Scholar PubMed

[40] Iwasaki J, Mochizuki M, Nagaosa N. Current-induced skyrmion dynamics in constricted geometries. Nat Nanotech. 2013;8:742–7. DOI:10.1038/nnano.2013.176.742.Search in Google Scholar PubMed

[41] Seki S, Yu XZ, Ishiwata S, Tokura Y. Observation of Skyrmions in a multiferroic material. Science. 2012;336:198–201. DOI:10.1126/science.1214143.198.Search in Google Scholar PubMed

[42] Seki S, Kim JH, Inosov DS, Georgii R, Keimer B, Ishiwata S, Tokura Y, et al. Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu2OSeO3. Phys Rev B. 2012;85. DOI:10.1103/PhysRevB.85.220406.220406.Search in Google Scholar

[43] Seki S, Ishiwata S, Tokura Y. Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3. Phys Rev B. 2012;86. DOI:10.1103/PhysRevB.86.060403.060403.Search in Google Scholar

[44] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C, et al. Long-wavelength helimagnetic order and Skyrmion lattice phase in Cu2OSeO3. Phys Rev Lett. 2012;108. DOI:10.1103/PhysRevLett.108.237204.237204.Search in Google Scholar PubMed

[45] Bos Jan-Willem G, Colin Claire V, Palstra Thomas TM. Magnetoelectric coupling in the cubic ferrimagnetCu2OSeO3. Phys Rev B. 2008;78. DOI:10.1103/PhysRevB.78.094416.094416.Search in Google Scholar

[46] Belesi M, Rousochatzakis I, Wu HC, Berger H, Shvets IV, Mila F, Ansermet JP. Ferrimagnetism of the magnetoelectric compound Cu2OSeO3 probed by 77Se NMR. Phys Rev B. 2010;82. DOI:10.1103/PhysRevB.82.094422.094422.Search in Google Scholar

[47] Belesi M, Philippe T, Rousochatzakis I, Wu HC, Berger H, Granville S, Shvets IV, Ansermet JPh. Magnetic properties of the magnetoelectric compound Cu2OSeO3: Magnetization and 77Se NMR study. J Phys: conf ser. 2011;303:012069–012069. DOI:10.1088/1742-6596/303/1/012069.Search in Google Scholar

[48] Smolenskiĭ GA, Chupis IE. Ferroelectromagnets. Sov Phys Usp. 1982;25:475–93. DOI:10.1070/PU1982v025n07ABEH004570.1982;25:475.Search in Google Scholar

[49] Pimenov A, Mukhin AA, Ivanov VY, Travkin VD, Balbashov AM, Loidl A. Possible evidence for electromagnons in multiferroic manganites. Nat Phys. 2006;2:97–100. DOI:10.1038/nphys212.97.Search in Google Scholar

[50] Katsura H, Balatsky AV, Nagaosa N. Dynamical magnetoelectric coupling in helical magnets. Phys Rev Lett. 2007;98. DOI:10.1103/PhysRevLett.98.027203.027203.Search in Google Scholar PubMed

[51] Mochizuki M, Seki S. Magnetoelectric resonances and predicted microwave diode effect of the skyrmion crystal in a multiferroic chiral-lattice magnet. Phys Rev B. 2013;87. DOI:10.1103/PhysRevB.87.134403.134403.Search in Google Scholar

[52] Mochizuki M. Microwave magnetochiral effect in Cu2OSeO3. Phys Rev Lett. 2015;114. DOI:10.1103/PhysRevLett.114.197203.197203.Search in Google Scholar PubMed

[53] Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y, et al. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat Commun. 2013;4. DOI:10.1038/ncomms3391.2391.Search in Google Scholar PubMed

[54] Okamura Y, Kagawa F, Seki S, Kubota M, Kawasaki M, Tokura Y. Microwave magnetochiral dichroism in the chiral-lattice magnet Cu2OSeO3. Phys Rev Lett. 2015;114. DOI:10.1103/PhysRevLett.114.197202.197202.Search in Google Scholar PubMed

[55] Arima T. Ferroelectricity induced by proper-screw type magnetic order. J Phys Soc Jpn. 2007;76:073702–073702. DOI:10.1143/JPSJ.76.073702.073702.Search in Google Scholar

[56] Bak P, Jensen MH. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J Phys C: Solid State Phys. 1980;13:L881–L885. DOI:10.1088/0022-3719/13/31/002.L881.Search in Google Scholar

[57] Yi SD, Onoda S, Nagaosa N, Han JH. Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet. Phys Rev B. 2009;80. DOI:10.1103/PhysRevB.80.054416.054416.Search in Google Scholar

[58] Buhrandt S, Fritz L. Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations. Phys Rev B. 2013;88. DOI:10.1103/PhysRevB.88.195137.195137.Search in Google Scholar

[59] Mochizuki M. Spin-wave modes and their intense excitation effects in Skyrmion crystals. Phys Rev Lett. 2012;108. DOI:10.1103/PhysRevLett.108.017601.017601.Search in Google Scholar PubMed

[60] Petrova O, Tchernyshyov O. Spin waves in a skyrmion crystal. Phys Rev B. 2011;84. DOI:10.1103/PhysRevB.84.214433.214433.Search in Google Scholar

[61] Jung JH, Matsubara M, Arima T, He JP, Kaneko Y, Tokura Y. Optical magnetoelectric effect in the polar GaFeO3 ferrimagnet. Phys Rev Lett. 2004;93. DOI:10.1103/PhysRevLett.93.037403.037403.Search in Google Scholar PubMed

[62] Saito M, Taniguchi K, Arima T. Gigantic optical magnetoelectric effect in CuB2O4. J Phys Soc Jpn–J. 2008;77:013705–013705. DOI:10.1143/JPSJ.77.013705.013705.Search in Google Scholar

[63] Saito M, Ishikawa K, Taniguchi K, Arima T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4. Phys Rev Lett. 2008;101. DOI:10.1103/PhysRevLett.101.117402.117402.Search in Google Scholar PubMed

[64] Takahashi Y, Shimano R, Kaneko Y, Murakawa H, Tokura Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nat Phys. 2011;8:121–5. DOI:10.1038/nphys2161.121.Search in Google Scholar

[65] Bordács S, et al. Chirality of matter shows up via spin excitations. Nat Phys. 2012;8:734–8. DOI:10.1038/nphys2387.734.Search in Google Scholar

[66] Miyahara S, Furukawa N. Theory of magnetoelectric resonance in two-dimensional S= 3/2 antiferromagnet Ba2CoGe2O7 via spin-dependent metal-ligand hybridization mechanism. J Phys Soc Jpn. 2011;80:073708–073708. DOI:10.1143/JPSJ.80.073708.073708.Search in Google Scholar

[67] Kézsmárki I, et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater. 2015;14:1116–22. DOI:10.1038/nmat4402.1116.Search in Google Scholar PubMed

[68] Ruff E, Widmann S, Lunkenheimer P, Tsurkan V, Bordács S, Kézsmárki I, Loidl A, et al. Multiferroicity and skyrmions carrying electric polarization in GaV4S8. Sci Adv. 2015;1:e1500916–e1500916. DOI:10.1126/sciadv.1500916.e1500916.Search in Google Scholar PubMed PubMed Central

[69] Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T, Kakurai K, Tokura Y, et al. Néel-type Skyrmion lattice e in the tetragonal polar magnet VOSe2O5. Phys Rev Lett. 2017;119. DOI:10.1103/PhysRevLett.119.237201.237201.Search in Google Scholar PubMed

Published Online: 2019-10-31

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2019-0017/html
Scroll to top button