Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Dehydrogenation of alcohols and polyols from a hydrogen production perspective

Jesús Campos
  • Corresponding author
  • Instituto de Investigaciones Químicas (IIQ) and Departamento de Química Inorgánica, CSIC and Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-10 | DOI: https://doi.org/10.1515/psr-2017-0017

Abstract

The production of hydrogen from renewable resources is still a major challenge in our way to reach a foreseen hydrogen economy. Abstracting the hydrogen contained in alcohols by means of acceptorless dehydrogenation reactions has emerged as a viable method with high potential. This is particularly true when applied to bio-based alcohols such as ethanol, glycerol or sugars, whose hydrogen extrusion is covered in this contribution. A general overview of the development of aceptorless alcohol dehydrogenation reactions and its potential implementation into future biorefineries are discussed.

Keywords: acceptorless dehydrogenation; ethanol; glycerol; homogeneous catalysis; sugar alcohols

References

  • [1]

    For recent reviews see: (a) Dobereiner GE, Crabtree RH. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev. 2010;110:681–703. (b) Nandakumar A, Midya SP, Landge VG, Balaraman E. Transition-metal-catalyzed hydrogen- transfer annulations: access to heterocyclic scaffolds. Angew Chem Int Ed. 2015;54:11022–34. (c) Wang D, Astruc D. The golden age of transfer hydrogenation. Chem Rev. 2015;115:6621–86. (d) Nixon TD, Whittlesey MK, Williams JM. Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans. 2009:753−62. (e) Werkmeister S, Neumann J, Junge K, Beller M. Pincer-type complexes for catalytic (De)Hydrogenation and Transfer (De)- Hydrogenation reactions: recent progress. Chem Eur J. 2015;21:12226−50.PubMedCrossrefGoogle Scholar

  • [2]

    Huang F, Liu Z, Yu Z. C-Alkylation of ketones and related compounds by alcohols: transition-Metal-Catalyzed Dehydrogenation. Angew Chem Int Ed. 2016;55:862−75.CrossrefGoogle Scholar

  • [3]

    (a) Jumde VR, Cini E, Porcheddu A, Taddei M. Metal-catalyzed tandem 1,4-benzodiazepine synthesis based on two hydrogen-transfer reactions. Eur J Org Chem. 2015;2015:1068−74. (b) Yan T, Feringa BL, Barta K. Benzylamines via iron-catalyzed direct amination of benzyl alcohols. ACS Catal. 2016;6:381–8. (c) Luo Z, Qin F, Yan S, Li X. An efficient and promising method to prepare Ladostigil (TV3326) via asymmetric transfer hydrogenation catalyzed by Ru-Cs-DPEN in an HCOONa-H2O-surfactant system. Tetrahedron Assymetry. 2012;23:333–8. (d) Leonard J, Blacker AJ, Marsden SP, Jones MF, Mulholland KR, Newton R. A survey of the borrowing hydrogen approach to the synthesis of some pharmaceutically relevant intermediates. Org Process Res Dev. 2015;19:1400–10.CrossrefGoogle Scholar

  • [4]

    (a) Gerfaud T, Martin C, Bouquet K, Talano S, Millois-Barbuis C, Musicki B, et al. Process development and good manufacturing practice production of a tyrosinase inhibitor via titanium-mediated coupling between unprotected resorcinols and ketones. Org Process Res Dev. 2017;21:631–40. (b) Berliner MA, Dubant SP, Makowski T, Ng K, Sitter B, Wager C, et al. Org Process Res Dev. 2011;15:1052−62. (c) Frederick MO, Frank SA, Vicenzi JT, LeTourneau ME, Berglund KD, Edward AW, et al. Development of a hydrogenative reductive amination for the synthesis of evacetrapib: unexpected benefits of water. Org Process Res Dev. 2014;18:546–51.CrossrefGoogle Scholar

  • [5]

    (a) Soldevila-Barreda JJ, Romero-Canelon I, Habtemariam A, Sadler PJ. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun. 2015;6:6582. (b) Bose S, Ngo AH, Do LH. Intracellular transfer hydrogenation mediated by unprotected organoiridium catalysts. J Am Chem Soc. 2017;139:8792–5. (c) Fu Y, Sanchez-Cano C, Soni R, Romero-Canelon I, Hearn JM, Liu Z, et al. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Trans. 2016;45:8367–78.CrossrefPubMedGoogle Scholar

  • [6]

    (a) Okamoto Y, Kohler V, Paul CE, Hollmann F, Ward TR. Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme. ACS Catal. 2016;6:3553–7. (b) Okamoto Y, Kohler V, Ward TR. An NAD(P)H-dependent artificial transfer hydrogenase for multienzymatic cascades. J Am Chem Soc. 2016;138:5781–4.CrossrefGoogle Scholar

  • [7]

    (a) Alberico E, Nielsen M. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol. Chem Commun. 2015;51:6714−25. (b) Crabtree RH. Hydrogen storage in liquid organic heterocycles. Energy Environ Sci. 2008;1:134−8. (c) Chamoun R, Demirci UB, Miele P. Cyclic dehydrogenation−(re)hydrogenation with hydrogen-storage materials. Energy Technol. 2015;3:100−17.CrossrefGoogle Scholar

  • [8]

    Olah GA, Goeppert A, Prakash GK. Beyond oil and gas: the methanol economy. Weinheim: Wiley-VCH, 2006.Google Scholar

  • [9]

    (a) Gunanathan C, Milstein D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 2013;341:1229712. (b) Crabtree RH. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem Rev. 2017;117:9228–46. (c) Balaraman E, Khaskin E, Leitus G, Milstein D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat Chem. 2013;5:122–5.CrossrefPubMedGoogle Scholar

  • [10]

    Nielsen M. Hydrogen production by homogeneous catalysis: alcohol acceptorless dehydrogenation. In: Lichtfouse E, Schwarzbauer J, Robert D, editors. Hydrogen production and remediation of carbon and pollutants. Heidelberg: Springer, 2015.Google Scholar

  • [11]

    (a) Johnson TC, Morris DJ, Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev. 2010;39:81−8. (b) Trincado M, Banerjee D, Grützmacher H. Molecular catalysts for hydrogen production from alcohols. Energy Environ Sci. 2014;7:2464−503.PubMedCrossrefGoogle Scholar

  • [12]

    (a) Yamamoto N, Obora Y, Ishii Y. Iridium-Catalyzed oxidative methyl esterification of primary alcohols and diols with methanol. J Org Chem. 2011;76:2937–41. (b) Hanasaka F, Fujita K, Yamaguchi R. Synthesis of new cationic Cp*Ir N-heterocyclic carbene complexes and their high catalytic activities in the Oppenauer-type oxidation of primary and secondary alcohols. Organometallics. 2005;24:3422–33. (c) Wang GZ., Baeckvall JE. Ruthenium-catalyzed oxidation of alcohols by acetone. J Chem Soc Chem Commun. 1992;4:337–9.CrossrefPubMedGoogle Scholar

  • [13]

    Choi J, MacArthur AH, Brookhart M, Goldman AS. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem Rev. 2011;111:1761−79. (b) Crabtree RH. The organometallic chemistry of alkanes. Chem Rev. 1985;85:245−69.CrossrefPubMedGoogle Scholar

  • [14]

    Charman HB. Hydride transfer reactions catalyzed metal complexes. Nature. 1966;212:278–9. (b) Charman HB. Hydride transfer reactions catalysed by metal complexes. J Chem Soc. 1967;6:629–32. (c) Charman HB. Hydride transfer reactions catalyzed by rhodium-tin complexes. J Chem Soc. 1970;4:584–7.CrossrefGoogle Scholar

  • [15]

    Vaska L, Diluzio JW. On the origin of hydrogen in metal hydride complexes formed by reaction with alcohols. J Am Chem Soc. 1962;84:4989–90.CrossrefGoogle Scholar

  • [16]

    Sawama Y, Morita K, Yamada T, Nagata S, Yabe Y, Monguchi Y, et al. Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chem. 2014;16:3439–43.CrossrefGoogle Scholar

  • [17]

    (a) Dobson A, Robinson SD. Complexes of the platinum metals. 7. Homogeneous ruthenium and osmium catalysts for the dehydrogenation of primary and secondary alcohols. Inorg Chem. 1977;16:137–42. (b) Dobson A, Robinson SD. Catalytic dehydrogenation of primary and secondary alcohols by Ru(OCOCF3)2(CO)(PPh3)2. J Organomet Chem. 1975;87:C52–3.CrossrefGoogle Scholar

  • [18]

    Khusnutdinova JR, Milstein D. Metal–ligand cooperation. Angew Chem Int Ed. 2015;54:12236–73.CrossrefGoogle Scholar

  • [19]

    (a) Li HX, Wang HX. Computational mechanistic studies of acceptorless dehydrogenation reactions catalyzed by transition metal complexes. Sci China Chem. 2012;55:1991−2008. (b) Hou C, Zhang ZH, Zhao CY, Ke ZF. DFT study of acceptorless alcohol dehydrogenation mediated by ruthenium pincer complexes: ligand tautomerization governing metal ligand cooperation. Inorg Chem. 2016;55:6539−51. (c) Musa S, Shaposhnikov I, Cohen S, Gelman D. Ligand−metal cooperation in PCP pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem Int Ed. 2011;50:3533−7.CrossrefGoogle Scholar

  • [20]

    Rybak WK, Ziółkowski JJ. Dehydrogenation of alcohols catalysed by polystyrene- supported ruthenium complexes. J Mol Catal. 1981;11:365–70.CrossrefGoogle Scholar

  • [21]

    Jung CW, Garrou PE. Dehydrogenation of alcohols and hydrogenation of aldehydes using homogeneous ruthenium catalysts. Organometallics. 1982;1:658–66.CrossrefGoogle Scholar

  • [22]

    Zhang L, Raffa G, Nguyen DH, Swesi Y, Corbel-Demailly L, Capet F, et al. Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: influence of catalyst structure and of hydrogen mass transfer. J Catal. 2016;340:331–43.CrossrefGoogle Scholar

  • [23]

    Lin Y, Ma D, Lu X. Iridium pentahydride complex catalyzed dehydrogenation of alcohols in the absence of a hydrogen acceptor. Tetrahedron Lett. 1987;28:3115–8.CrossrefGoogle Scholar

  • [24]

    (a) Morton D, Cole-Hamilton DJ. Rapid thermal hydrogen production from alcohols catalyzed by [Rh(2,2′-bipyridyl) 2]Cl. J Chem Soc Chem Commun. 1987; 248–9. (b) Morton D, Cole-Hamilton DJ, Schofield JA, Pryce RJ. Rapid thermal hydrogen production from 2,3-butanediol catalyzed by homogeneous rhodium catalysis. Polyhedron. 1987;6:2187–9.Google Scholar

  • [25]

    Morton D, Cole-Hamilton DJ. Molecular hydrogen complexes in catalysis: highly efficient hydrogen production from alcoholic substrates catalysed by ruthenium complexes. J Chem Soc Chem Commun. 1988;1154−6.Google Scholar

  • [26]

    See for example: (a) Van der Sluys LS, Kubas GJ, Caulton KG. Reactivity of (dihydrogen)dihydridotris(triphenylphosphine)ruthenium. Dimerization to form (PPh3)2(H)Ru(.mu.-H)3Ru(PPh3)3 and decarbonylation of ethanol under mild conditions. Organometallics. 1991;10:1033−8. (e) Kloek SM, Heynekey DM, Goldberg KI. Stereoselective decarbonylation of methanol to form a stable Iridium(III) trans-Dihydride Complex. Organometallics. 2006;25:3007−11. (g) Melnick JG, Radosevich AT, Villagran D, Nocera DG. Decarbonylation of ethanol to methane, carbon monoxide and hydrogen by a [PNP]Ir complex. Chem Commun. 2010;46:79−81.CrossrefGoogle Scholar

  • [27]

    Hu P, Fogler E, Diskin-Posner Y, Iron MA, Milstein D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat Commun. 2015;6:6859.PubMedCrossrefGoogle Scholar

  • [28]

    Junge H, Loges B, Beller M. Novel improved ruthenium catalysts for the generation of hydrogen from alcohols. Chem Commun. 2007:522–4.Google Scholar

  • [29]

    Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M. Efficient hydrogen production from alcohols under mild reaction conditions. Angew Chem Int Ed. 2011;50:9593−7.CrossrefGoogle Scholar

  • [30]

    Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature. 2013;495:85–90.PubMedCrossrefGoogle Scholar

  • [31]

    Rodriguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H. A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nat Chem. 2013;5:342.Google Scholar

  • [32]

    (a) Göttker-Schnetmann I, White P, Brookhart M. J Am Chem Soc. 2004;126:1804. (b) Göttker-Schnetmann I, Brookhart M. Mechanistic studies of the transfer dehydrogenation of cyclooctane catalyzed by Iridium Bis(phosphinite) p-XPCP pincer complexes. J Am Chem Soc. 2004;126:9330–8.Google Scholar

  • [33]

    Choi J, MacArthur AH, Brookhart M, Goldman AS. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem Rec. 2011;111:1761–79.CrossrefGoogle Scholar

  • [34]

    Polukeev AV, Petrovskii PV, Peregudov AS, Ezernitskaya MG, Koridze AA. Dehydrogenation of alcohols by Bis(phosphinite) benzene based and Bis(phosphine) ruthenocene based iridium pincer complexes. Organometallics. 2013;32:1000–15.CrossrefGoogle Scholar

  • [35]

    Musa S, Shaposhnikov I, Cohen S, Gelman D. Ligand–metal cooperation in PCP pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem Int Ed. 2011;50:3533–7.CrossrefGoogle Scholar

  • [36]

    Oded K, Musa S, Gelman D, Blum J. Dehydrogenation of alcohols under ambient atmosphere by a recyclable sol–gel encaged iridium pincer catalyst. Catal Commun. 2012;20:68–70.CrossrefGoogle Scholar

  • [37]

    Michlik S, Kempe R. A sustainable catalytic pyrrole synthesis. Nat Chem. 2013;5:140.CrossrefPubMedGoogle Scholar

  • [38]

    Michlik S, Kempe R. Regioselectively functionalized pyridines from sustainable resources. Angew Chem Int Ed. 2013;52:6326−9.CrossrefGoogle Scholar

  • [39]

    Blum Y, Shvo Y. Catalytically reactive (4-tetracyclone)(CO)(H)2Ru and related complexes in dehydrogenation of alcohols to esters. J Organomet Chem. 1985;282:C7–10.CrossrefGoogle Scholar

  • [40]

    Conley BL, Pennington-Boggio MK, Boz E, Williams TJ. Discovery, applications, and catalytic mechanisms of Shvo’s catalyst. Chem Rev. 2010;110:2294–312.PubMedCrossrefGoogle Scholar

  • [41]

    Blum Y, Shvo Y. Catalytically reactive ruthenium intermediates in the homogeneous oxidation of alcohols to esters. Isr J Chem. 1984;24:144–8.CrossrefGoogle Scholar

  • [42]

    (a) Casey CP, Singer S, Powell DR, Hayashi RK, Kavana M. Hydrogen transfer to carbonyls and imines from a hydroxycyclopentadienyl ruthenium hydride: evidence for concerted hydride and proton transfer. J Am Chem Soc. 2001;123:1090. (b) Johnson JB, Bäckvall JE. Mechanism of ruthenium-catalyzed hydrogen transfer reactions. Concerted transfer of OH and CH hydrogens from an alcohol to a (cyclopentadienone)ruthenium complex. J Org Chem. 2003;68:7681. (c) Comas-Vives A, Ujague G, Lledós A. Hydrogen transfer to ketones catalyzed by Shvo’s ruthenium hydride complex: a mechanistic insight. Organometallics. 2007;26:4135.PubMedCrossrefGoogle Scholar

  • [43]

    Fujita K, Tanino N, Yamaguchi R. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols. Org Lett. 2007;9:109−111.CrossrefPubMedGoogle Scholar

  • [44]

    (a) Fujita K, Kawahara R, Aikawa T, Yamaguchi R. Hydrogen production from a methanol−water solution catalyzed by an anionic iridium complex bearing a functional bipyridonate ligand under weakly basic conditions. Angew Chem Int Ed. 2015;54:9057−60. (b) Zeng G, Sakaki S, Fujita K, Sano H, Yamaguchi R. Efficient catalyst for acceptorless alcohol dehydrogenation. ACS Catal. 2014;4:1010−20. (c) Kawahara R, Fujita K, Yamaguchi R. Cooperative catalysis by iridium complexes with a bipyridonate ligand. Angew Chem Int Ed. 2012;51:12790−4.CrossrefGoogle Scholar

  • [45]

    Dutta I, Sarbajna A, Pandey P, Rahaman SM, Singh K, Bera JK. Acceptorless dehydrogenation of alcohols on a diruthenium(II,II) platform. Organometallics. 2016;35:1505−13.CrossrefGoogle Scholar

  • [46]

    (a) Baratta W, Bossi G, Putignano E, Rigo P. Pincer and Diamine Ru and Os Diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones. Chem Eur J. 2011;17:3474−81. (b) Esteruelas MA, Honczek N, Oliván M, Oñate E, Valencia M. Direct access to POP-Type Osmium(II) and Osmium(IV) complexes: Osmium a promising alternative to ruthenium for the synthesis of imines from alcohols and amines. Organometallics. 2011;30:2468–71.CrossrefGoogle Scholar

  • [47]

    Roundhill DM. Excited-state chemistry of tetrakis(.mu.-pyrophosphito)diplatinum(II). Photoinduced addition of aryl bromides and iodides to the binuclear complex and the photoinduced catalytic conversion of isopropyl alcohol into acetone and hydrogen. J Am Chem Soc. 1985;107:4354–6.CrossrefGoogle Scholar

  • [48]

    Jin H, Xie J, Pan C, Zhu Z, Cheng Y, Zhu C. Rhenium-catalyzed acceptorless dehydrogenative coupling via dual activation of alcohols and carbonyl compounds. ACS Catal. 2013;3:2195–8.CrossrefGoogle Scholar

  • [49]

    Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler HJ, Baumann W, et al. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew Chem Int Ed. 2013;52:14162−6.CrossrefGoogle Scholar

  • [50]

    (a) Bielinski EA, Lagaditis PO, Zhang Y, Mercado BQ, WüRtele C, Bernskoetter WH, et al. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. J Am Chem Soc. 2014;136:10234−7. (b) Bielinski EA, Förster M, Zhang Y, Bernskoetter WH, Hazari N, Holthausen MC. Base-free methanol dehydrogenation using a pincer-supported iron compound and lewis acid co-catalyst. ACS Catal. 2015;5:2404–15.CrossrefPubMedGoogle Scholar

  • [51]

    Chakraborty S, Lagaditis PO, FöRster M, Bielinski EA, Hazari N, Holthausen MC, et al. Well-defined iron catalysts for the acceptorless reversible dehydrogenation- hydrogenation of alcohols and ketones. ACS Catal. 2014;4:3994−4003.CrossrefGoogle Scholar

  • [52]

    Chakraborty S, Brennessel WW, Jones WD. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-Heterocycles. J Am Chem Soc. 2014;136:8564−7.CrossrefPubMedGoogle Scholar

  • [53]

    Chakraborty S, Piszel PE, Brennessel WW, Jones WD. A single nickel catalyst for the acceptorless dehydrogenation of alcohols and hydrogenation of carbonyl compounds. Organometallics. 2015;34:5203−6.CrossrefGoogle Scholar

  • [54]

    Mukherjee A, Nerush A, Leitus G, Shimon LJ, Ben David Y, Espinosa Jalapa NA, et al. Manganese-catalyzed environmentally benign dehydrogenative coupling of alcohols and amines to form aldimines and H2: a catalytic and mechanistic study. J Am Chem Soc. 2016;138:4298−301.CrossrefPubMedGoogle Scholar

  • [55]

    O Bauer J, Chakraborty S, Milstein D. Manganese-catalyzed direct deoxygenation of primary alcohols. ACS Catal. 2017;7:4462–6.Google Scholar

  • [56]

    Nguyen DH, Trivelli X, Capet F, Paul JF, Dumeignil F, Gauvin RM. Manganese pincer complexes for the base-free, acceptorless dehydrogenative coupling of alcohols to esters: development, scope, and understanding. ACS Catal. 2017;7:2022−32.CrossrefGoogle Scholar

  • [57]

    Tan DW, Li HX, Zhang MJ, Yao JL, Lang JP. Acceptorless dehydrogenation of alcohols catalyzed by CuI N-Heterocycle thiolate complexes. ChemCatChem. 2017;9:1113–8.CrossrefGoogle Scholar

  • [58]

    Zhang G, Hanson SK. Cobalt-catalyzed alcohol hydrogenation and dehydrogenation reactions. Org Lett. 2013;15:650−3.Google Scholar

  • [59]

    Data from Renewal Fuels Association (RFA). Available at: http://www.ethanolrfa.org/. Accessed: 10 Aug 2017.

  • [60]

    Morton D, Cole-Hamilton DJ, Utuk ID, Paneque-Sosa M, Lopez-Poveda M. Hydrogen production from ethanol catalysed by group 8 metal complexes. J Chem Soc Dalton Trans. 1989:489–95.Google Scholar

  • [61]

    Kagalwala HN, Maurer AB, Mills IN, Bernhard S. Visible-light-driven alcohol dehydrogenation with a rhodium catalyst. ChemCatChem. 2014;6:3018–26.CrossrefGoogle Scholar

  • [62]

    O’Lenick AJ. Guerbet chemistry. J Surfact Det. 2001;4:311–5.CrossrefGoogle Scholar

  • [63]

    Gunanathan C, Shimon LJ, Milstein D. Direct conversion of alcohols to acetals and H2 catalyzed by an acridine-based ruthenium pincer complex. J Am Chem Soc. 2009;131:3146–7.CrossrefGoogle Scholar

  • [64]

    Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG. Chemicals from ethanol – the dehydrogenative route of the ethyl acetate one-pot synthesis. J Mol Catal A: Chemical. 2011;334:29–34.CrossrefGoogle Scholar

  • [65]

    Ethyl Acetate (ETAC): 2017 World Market Outlook and Forecast up to 2021. Merchant Research & Consulting ltd. Available at: https://mcgroup.co.uk. Accessed: 1 Aug 2017.

  • [66]

    Nielsen M, Junge H, Kammer A, Beller M. Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew Chem Int Ed. 2012;51:5711–3.CrossrefGoogle Scholar

  • [67]

    (a) Spasyuk D, Smith S, Gusev DG from esters to alcohols and back with ruthenium and osmium catalysts. Angew Chem Int Ed. 2012;51:2772–5. (b) Spasyuk D, Gusev DG. Acceptorless dehydrogenative coupling of ethanol and hydrogenation of esters and imines. Organometallics. 2012;31:5239–42.CrossrefGoogle Scholar

  • [68]

    Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, et al. Catalytic hydrogenation of esters. Development of an efficient catalyst and processes for synthesising (R)-1,2-Propanediol and 2-(l-Menthoxy)etanol. Org Process Res Dev. 2012;16:166−71.CrossrefGoogle Scholar

  • [69]

    Baratta W, Chelucci G, Gladiali S, Siega K, Toniutti M, Zanette M, et al. Ruthenium(II) terdentate CNN complexes: superlative catalysts for the hydrogen-transfer reduction of ketones by reversible insertion of a carbonyl group into the Ru[BOND]H bond. Angew Chem Int Ed. 2005;44:6214.CrossrefGoogle Scholar

  • [70]

    Zhang J, Leitus G, Ben-David Y, Milstein D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J Am Chem Soc. 2005;127:10840.CrossrefPubMedGoogle Scholar

  • [71]

    Clarke ZE, Maragh PT, Dasgupta TP, Gusev DG, Lough AJ, Abdur-Rashid K. A family of active iridium catalysts for transfer hydrogenation of ketones. Organometallics. 2006;25:4113.CrossrefGoogle Scholar

  • [72]

    Tanaka R, Yamashita M, Nozaki K. Catalytic hydrogenation of carbon dioxide using Ir(III)−pincer complexes. J Am Chem Soc. 2009;131:14168.CrossrefPubMedGoogle Scholar

  • [73]

    Spasyuk D, Vicent C, Gusev DG. Chemoselective hydrogenation of carbonyl compounds and acceptorless dehydrogenative coupling of alcohols. J Am Chem Soc. 2015;137:3743–6.PubMedCrossrefGoogle Scholar

  • [74]

    Gunanathan C, Ben-David Y, Milstein D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science. 2007;317:790−2.PubMedCrossrefGoogle Scholar

  • [75]

    Vicent C, Gusev DG. ESI-MS insights into acceptorless dehydrogenative coupling of alcohols. ACS Catal. 2016;6:3301–9.CrossrefGoogle Scholar

  • [76]

    Gusev DG. Dehydrogenative coupling of ethanol and ester hydrogenation catalyzed by pincer-type YNP complexes. ACS Catal. 2016;6:6967–81.CrossrefGoogle Scholar

  • [77]

    Hu P, Ben-David Y, Milstein D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew Chem Int Ed. 2016;55:1061 –4.CrossrefGoogle Scholar

  • [78]

    Hu P, Fogler E, Diskin-Posner Y, Iron MA, Milstein D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat Commun. 2015;6:6859.PubMedCrossrefGoogle Scholar

  • [79]

    Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, et al. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes. ChemSusChem. 2014;7:2419–22.PubMedCrossrefGoogle Scholar

  • [80]

    Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, et al. Catalytic conversion of alcohols into carboxylic acid salts in water: scope, recycling, and mechanistic insights. ChemSusChem. 2016;9:1413–23.CrossrefPubMedGoogle Scholar

  • [81]

    Nguyen DH, Morin Y, Zhang L, Trivelli X, Capet F, Paul S, et al. Oxidative transformations of biosourced alcohols catalyzed by earth-abundant transition metals. ChemCatChem. 2017;9:2652–60.CrossrefGoogle Scholar

  • [82]

    McCoy M. Glycerin surplus. Plants are closing, and new uses for the chemical are being found. Chem Eng News. 2006;84:7.Google Scholar

  • [83]

    (a) Tan HW, Abdul Aziz AR, Aroua MK. Glycerol production and its applications as a raw material: a review. Renew Sustainable Energy Rev. 2013;27:118–27. (b) Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD. From glycerol to value-added products. 2007;46:4434–40. (c) Katryniok B, Kimura H, Skrzyńska E, Girardon JS, Fongarland P, Capron M, et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem. 2011;13:1960–79.CrossrefGoogle Scholar

  • [84]

    (a) Soares RR, Simonetti DA, Dumesic JA. Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Ed. 2006;45:3982. (b) Huber GW, Shabaker JW, Dumesic JA. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science. 2003;300:2075–7.CrossrefGoogle Scholar

  • [85]

    Crotti C, Kasparb J, Farnetti E. Dehydrogenation of glycerol to dihydroxyacetone catalyzed by iridium complexes with P–N ligands. Green Chem. 2010;12:1295–300.CrossrefGoogle Scholar

  • [86]

    Sharninghausen LS, Campos J, Manas MG, Crabtree RH. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat Commun. 2014;5:5084.CrossrefPubMedGoogle Scholar

  • [87]

    (a) Hintermair U, Campos J, Brewster TP, Pratt LM, Schley ND, Crabtree RH. Hydrogen-transfer catalysis with Cp*IrIII complexes: the influence of the ancillary ligands. ACS Catal 2014;4:99−108. (b) Campos J, Hintermair U, Brewster TP, Takase MK, Crabtree RH. Catalyst activation by loss of cyclopentadienyl ligands in hydrogen transfer catalysis with Cp*IrIII complexes. ACS Catal. 2014;4:973−85.CrossrefGoogle Scholar

  • [88]

    Campos J, Sharninghausen LS, Manas MG, Crabtree RH. Methanol dehydrogenation by iridium N‑Heterocyclic carbene complexes. Inorg Chem. 2015;54:5079−84.CrossrefGoogle Scholar

  • [89]

    Dusselier M, van Wouwe P, Dewaele A, Makshina E, Sels BF. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci. 2013;6:1415–42.CrossrefGoogle Scholar

  • [90]

    (a) Sharninghausen LS, Mercado BQ, Crabtree RH, Balcells D, Campos J. Gel matrices for the crystallization of [Ir4(IMe)7(CO)H10]2+ and [Ir4(IMe)8H9]3+ clusters derived from catalytic glycerol dehydrogenation. Dalton Trans. 2015;44:18403–10. (b) Campos J, Sharninghausen LS, Crabtree RH, Balcells D. A carbene-rich but carbonyl-poor [Ir6(IMe)8(CO)2H14]2+ polyhydride cluster as a deactivation product from catalytic glycerol dehydrogenation. Angew Chem Int Ed. 2014;53:12808–11.CrossrefPubMedGoogle Scholar

  • [91]

    Sun Z, Liu Y, Chen J, Huang C, Tu T. Robust iridium coordination polymers: highly selective, efficient, and recyclable catalysts for oxidative conversion of glycerol to potassium lactate with dihydrogen liberation. ACS Catal. 2015;5:6573−8.CrossrefGoogle Scholar

  • [92]

    Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A prolific catalyst for selective conversion of neat glycerol to lactic acid. ACS Catal. 2016;6:2014−7.CrossrefGoogle Scholar

  • [93]

    Li Y, Nielsen M, Li B, Dixneuf PH, Junge H, Beller M. Ruthenium-catalyzed hydrogen generation from glycerol and selective synthesis of lactic acid. Green Chem. 2015;17:193–8.CrossrefGoogle Scholar

  • [94]

    Sharninghausen LS, Mercado BQ, Crabtree RH, Hazari N. Selective conversion of glycerol to lactic acid with iron pincer precatalysts. Chem Commun. 2015;51:16201–4.CrossrefGoogle Scholar

  • [95]

    Starch-Stärke RH. Renewable raw materials in Europe – Industrial utilisation of starch and sugar. 2002;54:89–99.Google Scholar

  • [96]

    Huber GW, Dumesic JA. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today. 2006;111:119–32.CrossrefGoogle Scholar

  • [97]

    (a) Ren N, Wang A, Cao G, Xu J, Gao L. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv. 2009;27:1051–60. (b) Zeikus JG. Chemical and fuel production by anaerobic bacteria. Annu Rev Microbiol. 1980;34:423. (c) Li J, Ren N, Li B, Qin Z, He J. Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresour Technol. 2008;99:6528–37.PubMedCrossrefGoogle Scholar

  • [98]

    Toonssen R, Woudstra N, Verkooijen AH. Int J Hydrogen Energy. 2008;33:4074–82.CrossrefGoogle Scholar

  • [99]

    (a) Garcia L, French R, Czernik S, Chornet E. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Appl Catal A. 2000;201:225–39. (b) Marquevich M, Czernik S, Chornet E, Montane D. Hydrogen from biomass: steam reforming of model compounds of fast-pyrolysis oil. Energy Fuels. 1999;13:1160–6.CrossrefGoogle Scholar

  • [100]

    Coronado I, Stekrova M, Reinikainen M, Simell P, Lefferts L, Lehtonen J. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. Int J Hydrogen Energy. 2016;4:11003–32.Google Scholar

  • [101]

    (a) de Wit G, de Vlieger JJ, Kock-van Dalen AC, Kieboom AP, van Bekkum H. Catalytic dehydrogenation of reducing sugars in alkaline solution at ambient conditions. Transfer hydrogenation of fructose. Tetrahedron Lett. 1978;15:1327–30. (b) de Wit G, Devlieger JJ, van Dalen AC, Heus R, Laroy R, van Hengstum AJ, Kieboom AP, van Bekkum H. Catalytic dehydrogenation of reducing sugars in alkaline solution. Carbohydrate Res. 1981;91:125–38.Google Scholar

  • [102]

    Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature. 2002;418:964–7.CrossrefPubMedGoogle Scholar

  • [103]

    Taccardi N, Assenbaum D, Berger ME, Bçsmann A, Enzenberger F, Wçlfel R, et al. Catalytic production of hydrogen from glucose and other carbohydrates under exceptionally mild reaction conditions. Green Chem. 2010;12:1150–6.CrossrefGoogle Scholar

  • [104]

    Zhan Y, Shen Y, Li S, Yueb B, Zhou X. Hydrogen generation from glucose catalyzed by organoruthenium catalysts under mild conditions Chem Commun. 2017;53:4230–3.Google Scholar

  • [105]

    Li Y, Sponholz P, Nielsen M, Junge H, Beller M. Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose. ChemSusChem. 2015;8:804–8.PubMedCrossrefGoogle Scholar

  • [106]

    Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010;12:539–54.CrossrefGoogle Scholar

  • [107]

    (a) Ding LN, Wang AQ, Zheng MY, Zhang T. Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst. ChemSusChem 2010;3:818–21. (b) Fukuoka A, Dhepe PL. Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed. 2006;31:5161–3.CrossrefPubMedGoogle Scholar

  • [108]

    Glattfeld E, Gershon S. The catalytic dehydrogenation of sugar alcohols. J Am Chem Soc. 1938;60:2013–23.CrossrefGoogle Scholar

  • [109]

    Manas MG, Campos J, Sharninghausen LS, Lin E, Crabtree RH. Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chem. 2015;17:594–600.CrossrefGoogle Scholar

About the article

Published Online: 2018-04-10


JC thanks BBVA Foundation for a Grant for Researchers and Cultural Creators 2016, the EU H2020 Program for a Marie Skłodowska–Curie Individual Fellowship (Grant Agreement no. 706008) and the Spanish Ministry of Economy and Competitiveness (Project CTQ2016-75193-P [AEI/FEDER, UE]).


Citation Information: Physical Sciences Reviews, Volume 3, Issue 6, 20170017, ISSN (Online) 2365-659X, ISSN (Print) 2365-6581, DOI: https://doi.org/10.1515/psr-2017-0017.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in