Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

12 Issues per year

Online
ISSN
2365-659X
See all formats and pricing
More options …

Computational analysis and identification of battery materials

F. Meutzner
  • Corresponding author
  • TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, Freiberg 09596, Germany
  • Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Nestler / M. Zschornak
  • TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, Freiberg 09596, Germany
  • Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Institute of Ion Beam Physics & Materials Research, Bautzner Landstraße 400, Dresden 01328, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Canepa / G. S. Gautam / S. Leoni / S. Adams
  • Department of Materials Science & Engineering, National University of Singapore, Engineering Drive 2, 117579 Singapore, Singapore
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Leisegang
  • TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, Freiberg 09596, Germany
  • Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. A. Blatov / D. C. Meyer
Published Online: 2018-10-02 | DOI: https://doi.org/10.1515/psr-2018-0044

Abstract

Crystallography is a powerful descriptor of the atomic structure of solid-state matter and can be applied to analyse the phenomena present in functional materials. Especially for ion diffusion – one of the main processes found in electrochemical energy storage materials – crystallography can describe and evaluate the elementary steps for the hopping of mobile species from one crystallographic site to another. By translating this knowledge into parameters and search for similar numbers in other materials, promising compounds for future energy storage materials can be identified. Large crystal structure databases like the ICSD, CSD, and PCD have accumulated millions of measured crystal structures and thus represent valuable sources for future data mining and big-data approaches. In this work we want to present, on the one hand, crystallographic approaches based on geometric and crystal-chemical descriptors that can be easily applied to very large databases. On the other hand, we want to show methodologies based on ab initio and electronic modelling which can simulate the structure features more realistically, incorporating also dynamic processes. Their theoretical background, applicability, and selected examples are presented.

Keywords: crystallography; electrochemistry; Voronoi–Dirichlet partitioning; bond valence sum; density functional theory

References

  • [1]

    Ceder G, Persson K. The Stuff of Dreams. Sci Am. 2013;309:36–40CrossrefGoogle Scholar

  • [2]

    Strategische weiterentwicklung des hoch- und höchstleistungsrechnens in Deutschland. Germany: Deutscher Wissenschaftsrat, 2012Google Scholar

  • [3]

    Fueling discovery by sharing. Nat Mater. 2013;12:173. DOI: 10.1038/nmat3594.Google Scholar

  • [4]

    Material’s Project, https://materialsproject.org, cited 04.05.2017.

  • [5]

    ‘Partnership for Advanced Computing in Europe’, http://www.prace-ri.eu (cited 09. March 2017).

  • [6]

    Boosting materials modelling. Nat Mater. 2016;15:365. DOI: 10.1038/nmat4619.PubMedGoogle Scholar

  • [7]

    Jahan A, Ismail MY, Sapuan SM, Mustapha F. Material screening and choosing methods – a review. Mater Des. 2010;31:696–705.CrossrefGoogle Scholar

  • [8]

    Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharmacol. 2009;9:580–588.CrossrefPubMedGoogle Scholar

  • [9]

    Green ML, Choi CL, Hattrick-Simpers JR, Joshi AM, Takeuchi I, Barron SC, et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl Phys Rev. 2017;4:011105.CrossrefGoogle Scholar

  • [10]

    Levi E, Levi MD, Chasid O, Aurbach D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J Electroceram. 2009;22:13–9.CrossrefGoogle Scholar

  • [11]

    Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, et al. An overview and future perspectives of aluminum batteries. Adv Mater. 2016;28:7564–79.PubMedCrossrefGoogle Scholar

  • [12]

    Van Noorden R. The rechargeable revolution: a better battery. Nature. 2014;507:26–8.PubMedCrossrefGoogle Scholar

  • [13]

    ‘Company overview of Pellion Technologies Inc.’, Bloomberg. Available at: http://www.bloomberg.com/research/stocks/private/snapshot. asp?privcapId=114339859. Accessed: 04 May 2017.

  • [14]

    Anurova NA, Blatov VA, Ilyushin GD, Blatova OA, Ivanov-Schitz AK, Dem’yanets LN. Migration maps of Li+ cations in oxygen-containing compounds. Solid State Ionics. 2008;179:2248–54.CrossrefGoogle Scholar

  • [15]

    Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G. Data mined ionic substitutions for the discovery of new compounds. Inorg Chem. 2011;50:656–63.PubMedCrossrefGoogle Scholar

  • [16]

    Avdeev M, Sale M, Adams S, Rao RP. Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics. 2012;225:43–6.CrossrefGoogle Scholar

  • [17]

    Gao J, Chu G, He M, Zhang S, Xiao R, Li H, Chen L. Screening possible solid electrolytes by calculating the conduction pathways using bond valence method. Sci China Phys Mech Astron. 2014;57:1526–36.CrossrefGoogle Scholar

  • [18]

    Xiao R, Li H, Chen L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci Rep. 2015;5:14227.PubMedCrossrefGoogle Scholar

  • [19]

    Meutzner F, Münchgesang W, Leisegang T, Schmid R, Zschornak M, Ureña De Vivanco M, Shevchenko AP, Blatov VA, Meyer DC. Identification of solid oxygen-containing Na-electrolytes: an assessment based on crystallographic and economic parameters. Crystal Res Technol. 2017;52:1600223.CrossrefGoogle Scholar

  • [20]

    Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–31.CrossrefPubMedGoogle Scholar

  • [21]

    Wong LL, Chen H, Adams S. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys Chem Chem Phys. 2017;19:7506–23.PubMedCrossrefGoogle Scholar

  • [22]

    Data mining, Merriam Webster: https://www.merriam-webster.com/dictionary/data%20mining (cited 04.05.2017).

  • [23]

    Larose DT. Discovering knowledge in data: an introduction to data mining. Hoboken, NJ: Wiley & Sons Inc., 2014.Google Scholar

  • [24]

    Sendek AD, Yang Q, Cubuk ED, Duerloo K-A, Cui Y, Reed EJ. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ Sci. 2017;10:306–20.CrossrefGoogle Scholar

  • [25]

    Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, et al. Big data: the next frontier for innovation, competition, and productivity. Brussels, San Francisco: McKinsey Global Institute, McKinsey & Company, 2011.Google Scholar

  • [26]

    Qu X, Jain A, Rajput NN, Cheng L, Zhang Y, Ong SP, et al. The electrolyte genome project: a big data approach in battery materials discovery. Comput Mater Sci. 2015;103:56–67.CrossrefGoogle Scholar

  • [27]

    Meutzner F, Münchgesang W, Kabanova NA, Zschornak M, Leisegang T, Blatov VA, Meyer DC. On the way to new possible Na-ion conductors: the Voronoi–Dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chem – Eur J. 2015;21:16601–8.CrossrefGoogle Scholar

  • [28]

    Ghadbeigi L, Sparks TD, Harada JK, Lettiere BR. Data-mining approach for battery materials. 2015 IEEE Conference on Technologies for Sustainability (SusTech), 2015:239–44.Google Scholar

  • [29]

    Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A. The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett. 2011;2:2241–51.CrossrefGoogle Scholar

  • [30]

    Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, et al. AFLOWLIB. ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci. 2012;58:227–35.CrossrefGoogle Scholar

  • [31]

    Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). Jom. 2013;65:1501–9.CrossrefGoogle Scholar

  • [32]

    Jónsson H, Mills G, Jacobsen KW. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G,, Coker DF, editor(s). Classical and quantum dynamics in condensed phase simulations. Singapore, New Jersey, London, Hong Kong: World Scientific, 1998:385–404.Google Scholar

  • [33]

    Adams S, Swenson J. Predictability of ion transport properties from the structure of solid electrolytes. Ionics. 2004;10:317–26.CrossrefGoogle Scholar

  • [34]

    Adams S. Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics. 2000;136:1351–61.Google Scholar

  • [35]

    Ling S-G, Gao J, Xiao R-J, Chen L-Q. High-throughput theoretical design of lithium battery materials. Chin Phys B. 2016;25:018208.CrossrefGoogle Scholar

  • [36]

    Xiao R, Li H, Chen L. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. J Materiomics. 2015;1:325–32.CrossrefGoogle Scholar

  • [37]

    Adams S, Prasada Rao R. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys. 2009;11:3210–6.CrossrefPubMedGoogle Scholar

  • [38]

    Adams S, Prasada Rao R. Understanding ionic conduction and energy storage materials with bond-valence-based methods. In: Brown ID, Poeppelmeier KR, editor(s). Bond Valences. Berlin Heidelberg: Springer , 2014:129–59.Google Scholar

  • [39]

    Sale M, Avdeev M. 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J Appl Crystallogr. 2012;45:1054–6.CrossrefGoogle Scholar

  • [40]

    Filsø MØ, Turner MJ, Gibbs GV, Adams S, Spackman MA, Iversen BB. Visualizing lithium-ion migration pathways in battery materials. Chem – Eur J. 2013;19:15535–44.CrossrefGoogle Scholar

  • [41]

    Filsø MØ, Eikeland E, Iversen BB. Procrystal analysis as a tool for the visualization of ion migration pathways. AIP Conference Proceedings 2016;1765:020010.CrossrefGoogle Scholar

  • [42]

    Adams S, Swenson J. Determining ionic conductivity from structural models of fast ionic conductors. Phys Rev Lett. 2000;84:4144.PubMedCrossrefGoogle Scholar

  • [43]

    Adams S, Swenson J. Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses. Phys Chem Chem Phys. 2002;4:3179–84.CrossrefGoogle Scholar

  • [44]

    Adams S, Swenson J. Bond valence analysis of reverse Monte Carlo produced structural models; a way to understand ion conduction in glasses. J Phys Condens Matter. 2005;17:S87–101.CrossrefGoogle Scholar

  • [45]

    Müller C, Zienicke E, Adams S, Habasaki J, Maass P. Comparison of ion sites and diffusion paths in glasses obtained by molecular dynamics simulations and bond valence analysis. Phys Rev B. 2007;75:014203.CrossrefGoogle Scholar

  • [46]

    Cai L, White RE. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J Power Sources. 2011;196:5985–9.CrossrefGoogle Scholar

  • [47]

    COMSOL Multiphysics® 3.5a USER’S Guide. 2008a. COMSOL Inc.Google Scholar

  • [48]

    COMSOL Multiphysics® 3.5a Reference Guide. 2008b. COMSOL Inc.Google Scholar

  • [49]

    Takada K, Ohno T. Experimental and computational approaches to interfacial resistance in solid-state batteries. Front Energy Res. 2016;4:10.Google Scholar

  • [50]

    In: Meyer DC, Leisegang T, editor(s). Electrochemical storage materials: from crystallography to manufacturing technology. OLDENBOURG: DE GRUYTER Publishing House, 2018Google Scholar

  • [51]

    Nishijima M, Ootani T, Kamimura Y, Sueki T, Esaki S, Murai S, et al. Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nat Commun. 2014;5:4553.PubMedCrossrefGoogle Scholar

  • [52]

    Fuess H, Hahn T, Wondratschek H, Müller U, Shmueli U, Prince E, et al., editors. International tables for crystallography. Berlin: Springer, 2004.Google Scholar

  • [53]

    Batten SR, Robson R. Interpenetrating nets: ordered, periodic entanglement. Angew Chemie Int Ed. 1998;37:1460–94.CrossrefGoogle Scholar

  • [54]

    Blatov VA, Shevchenko AP, Proserpio DM. Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des. 2014;14:3576–86.CrossrefGoogle Scholar

  • [55]

    Blatov VA, Proserpio DM. Periodic-graph approaches in crystal structure prediction. In: Oganov AR, editor(s). Modern methods of crystal structure prediction. Weinheim: Wiley VCH, 2011:1–28.Google Scholar

  • [56]

    Frank FT, Kasper J. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. 1958;11:184–90.CrossrefGoogle Scholar

  • [57]

    Frank FT, Kasper J. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 1959;12:483–99.CrossrefGoogle Scholar

  • [58]

    O’Keeffe M, Hyde BG. Crystal structures I. Patterns and symmetry. Washington, DC: Mineralogical Society of America, 1996.Google Scholar

  • [59]

    Steurer W, Dshemuchadse J. Intermetallics: structures, properties, and statistics. Oxford: Oxford University Press, International Union of Crystallography Monographs on Crystallography, 2016Google Scholar

  • [60]

    Aurenhammer F. Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput Surv. 1991;23:345–405.CrossrefGoogle Scholar

  • [61]

    Voronoi GF. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. J Reine Angew Math. 1908;134:198–287.Google Scholar

  • [62]

    Dirichlet GL. Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J Reine Angew Math. 1850;40:209–27.Google Scholar

  • [63]

    Niggli P. Die topologische Strukutranalyse. I. Z. Kristallogr Cryst Mater. 1927;65:391–415.Google Scholar

  • [64]

    Blatov VA, Shevchenko AP, Serenzhkin VN. Crystal space analysis by means of Voronoi–Dirichlet polyhedra. Acta Crystallogr A. 1995;51:909–16.CrossrefGoogle Scholar

  • [65]

    Blatov VA. Voronoi–Dirichlet polyhedra in crystal chemistry: theory and applications. Crystallogr Rev. 2004;10:249–318.CrossrefGoogle Scholar

  • [66]

    Descartes R. Principia philosophiae. Amsterdam: Apud Ludovicum Elzevirum, 1644.Google Scholar

  • [67]

    Liebling TM, Pournin L. Voronoi diagrams and Delauney triangulations: ubiquitous Siamese twins. Doc Math Extra Volume Optim Stories. 2012;2012:419–31.Google Scholar

  • [68]

    Blatov VA, Serezhkin VN. Stereoatomic model of the structure of inorganic and coordination compounds. Russ J Inorg Chem. 2000;45:S105–22.Google Scholar

  • [69]

    Voroglide. Fernuni Hagen. http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide. Accessed 01 Mar 2017.

  • [70]

    Blatov VA, Ilyushin GD, Blatova OA, Anurova NA, Ivanov-Schits AK, Dem’yanets LN. Analysis of migration paths in fast-ion conductors with Voronoi–Dirichlet partition. Acta Crystallogr B. 2006;62:1010–8.CrossrefPubMedGoogle Scholar

  • [71]

    Blatov VA, Shevchenko AP. Registration of the computer program ‘ToposPro’, Russian certificate No. 2013619016, 2013.Google Scholar

  • [72]

    Global materials market for alternative energy storage mechanisms. Frost & Sullivan, 2011:9833–9.Google Scholar

  • [73]

    Buss K, Wrobel P, Doetsch C. Global distribution of grid connected electrical energy storage systems. Int J Sustainable Energy Plann Manag. 2016;9:31–56.Google Scholar

  • [74]

    Kummer JT, Neill W. Battery having a molten alkali metal anode and a molten sulfur cathode. Publication date: 26. November 1968, US Patent US3413150 A.Google Scholar

  • [75]

    Yao Y-F, Kummer JT. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem. 1967;29:2453–75.CrossrefGoogle Scholar

  • [76]

    Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci. 2013;6:734–49.CrossrefGoogle Scholar

  • [77]

    Daniel C, Besenhard J. Handbook of battery materials, vol. 1, 2nd ed. Weihnheim: Wiley-VCH; 2011.Google Scholar

  • [78]

    Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Sci. 2011;334:928–35.CrossrefGoogle Scholar

  • [79]

    Belsky A, Hellenbrandt M, Karen VL, Luksch P. New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr B. 2002;58:364–9.CrossrefPubMedGoogle Scholar

  • [80]

    Whittingham MS, Huggins RA. Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J Chem Phys. 1971;54:414–6.CrossrefGoogle Scholar

  • [81]

    Song S, Duong HM, Korsunsky AM, Hu N, Lu L. A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep. 2016;6:32330.CrossrefPubMedGoogle Scholar

  • [82]

    Beyeler HU, Shannon RD, Chen HY. Ionic conductivity of single-crystal Na5YSi4O12ʹ. Appl Phys Lett. 1980;37:934–5.CrossrefGoogle Scholar

  • [83]

    Glöser S, Espinoza LT, Gandenberger C, Faulstich M. Raw material criticality in the context of classical risk assessment. Resour Policy. 2015;44:35–46.CrossrefGoogle Scholar

  • [84]

    Brown ID, Poeppelmeier KR, editors. Bond valences. Berlin Heidelberg: Springer, 2014.Google Scholar

  • [85]

    Pauling L. The principles determining the structure of complex ionic crystals. J Am Chem Soc. 1926;51:1010–26.Google Scholar

  • [86]

    Brown ID. Recent developments in the methods and applications of the bond valence model. Chem Rev. 2009;109:6858–919.PubMedCrossrefGoogle Scholar

  • [87]

    Baur WH. Bond length variation and distorted coordination polyhedra in inorganic crystals. Trans Am Crystallogr Assoc. 1970;6:125–55.Google Scholar

  • [88]

    Donnay G, Allmann R. How to recognize O2−, OH, and H2O in crystal structures determined by X-rays. Am Mineral. 1970;55:1003–15.Google Scholar

  • [89]

    Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B. 1970;41:244–7.Google Scholar

  • [90]

    Adams S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics. 2006;177:1625–30.CrossrefGoogle Scholar

  • [91]

    Preiser C, Loesel J, Brown ID, Kunz M, Skowron A. Long-range Coulomb forces and localized bonds. Acta Crystallogr B. 1999;55:698–711.PubMedCrossrefGoogle Scholar

  • [92]

    Brown ID. The chemical bond in inorganic chemistry: the bond valence model. Oxford: Oxford University Press, 2002:27Google Scholar

  • [93]

    Garrett JD, Greedan JE, Faggiani R, Carbotte S, Brown ID. Single-crystal growth and structure determination of Ag16I12P2O. J Solid State Chem. 1982;42:183–90.CrossrefGoogle Scholar

  • [94]

    Zhou Y, Adams S, Rao RP, Edwards DD, Neiman A, Pestereva N. Charge transport by polyatomic anion diffusion in Sc2(WO4). Chem Mater. 2008;20:6335–45.CrossrefGoogle Scholar

  • [95]

    Yashima M, Sekikawa T, Sato D, Nakano H, Omoto K. Crystal structure and oxide-ion diffusion of nanocrystalline, compositionally homogeneous ceria–zirconia Ce0.5Zr0.5O2 up to 1176K. Cryst Growth Des. 2013;13:829–37.CrossrefGoogle Scholar

  • [96]

    Cabana J, Ling CD, Oró-Solé J, Gautier D, Tobias G, Adams S, Canadell E, Palacin MR. Antifluorite-type lithium chromium oxide nitrides: synthesis, structure, order, and electrochemical properties. Inorg Chem. 2004;43:7050–60.PubMedCrossrefGoogle Scholar

  • [97]

    Mazza D. Modeling ionic conductivity in Nasicon structures. J Solid State Chem. 2001;156:154–60.CrossrefGoogle Scholar

  • [98]

    Fedotov SS, Kabanov AA, Kabanova NA, Blatov VA, Zhugayevych A, Abakumov AM, Khasanova NR, Antipov EV. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries. J Phys Chem C. 2017;121:3194–202.CrossrefGoogle Scholar

  • [99]

    Ouerfelli N, Guesmi A, Mazza D, Madani A, Zid MF, Driss A. Synthesis, crystal structure and mono-dimensional thallium ion conduction of TlFe0.22Al0.78As2O. J Solid State Chem. 2007;180:1224–9.CrossrefGoogle Scholar

  • [100]

    Safanama D, Sharma N, Rao RP, Brand HE, Adams S. Structural evolution of NASICON-type Li1+xAlxGe2-x(PO4)3 using in situ synchrotron X-ray powder diffraction. J Mater Chem A. 2006;4:7718–26.Google Scholar

  • [101]

    Kan WH, Huq A, Manthiram A. Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system. Chem Mater. 2016;28:1832–7.CrossrefGoogle Scholar

  • [102]

    Adams S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr B. 2001;57:278–87.PubMedCrossrefGoogle Scholar

  • [103]

    Chen H, Adams S. Bond softness sensitive bond-valence parameters for crystal structure plausibility tests. IUCrJ. 2017;4:614–25.PubMedCrossrefGoogle Scholar

  • [104]

    Swenson J, Adams S. Application of the bond valence method to reverse Monte Carlo produced structural models of superionic glasses. Phys Rev B. 2001;64:024204.CrossrefGoogle Scholar

  • [105]

    Swenson J, Adams S. Mixed alkali effect in glasses. Phys Rev Lett. 2003;90:155507.CrossrefPubMedGoogle Scholar

  • [106]

    Hall A, Swenson J, Adams S, Meneghini C. Mixed mobile ion effect and cooperative motions in silver-sodium phosphate glasses. Phys Rev Lett. 2008;101:195901.CrossrefPubMedGoogle Scholar

  • [107]

    Adams S, Rao RP. High power lithium ion battery materials by computational design. Phys Status Solidi A. 2011;208:1746–53.CrossrefGoogle Scholar

  • [108]

    Adams S, Rao RP. Structural requirements for fast lithium ion migration in Li10GeP2S12ʹ. J Mater Chem. 2012;22:7687–91.CrossrefGoogle Scholar

  • [109]

    Wong LL, Chen HM, Adams S. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na2+δFe2−δ/2(SO4). Phys Chem Chem Phys. 2015;17:9186–93.CrossrefPubMedGoogle Scholar

  • [110]

    Nishitani Y, Adams S, Ichikawa K, Tsujita T. Evaluation of magnesium ion migration in inorganic oxides by the bond valence site energy method. Solid State Ionics. 2018;315:111–115..CrossrefGoogle Scholar

  • [111]

    Wong LL, Chen H, Adams S. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Physical Chemistry Chemical Physics. 2017;19:7506–7523..CrossrefGoogle Scholar

  • [112]

    Pearson WH, Lomax JF. X-ray crystal diffraction study of Zr,Na-betaʺ-alumina. Mate Res Soc Symp Proc. 1993;293:315–21.Google Scholar

  • [113]

    Boilot JP, Collin G, Colomban P. Relation structure-fast ion conduction in the NASICON solid solution. J Solid State Chem. 1988;73:160–71.CrossrefGoogle Scholar

  • [114]

    Collin G, Comes R, Boilot JB, Colomban P. Disorder of tetrahedra in Nasicon-type structure – Part I. Na3Sc2(PO4)3: structures and ion-ion correlations. J Phys Chem. 1986;47:843–54.Google Scholar

  • [115]

    Susman S, Delbecq CJ, Brun TO, Prince E. Fast ion transport in the Nasicon analog Na3Sc2(PO4)3: structure and conductivity. Solid State Ionics. 1983;9:839–44.Google Scholar

  • [116]

    Chamkir M, El Jazouli A, De Waal D. Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A = Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates. J Solid State Chem. 2006;179:1883–91.CrossrefGoogle Scholar

  • [117]

    Zatrovsky IV. NASICON-type Na3V2(PO4). Acta Crystallogr E. 2010;66:pi12–12.Google Scholar

  • [118]

    Maksimov BA, Belov NV. The high temperature X-ray analysis of the monocrystals Na5YSi4O12ʹ. Dokl Akad Nauk SSSR. 1981;261:623–7.Google Scholar

  • [119]

    Rüscher CH, Gesing TM, Buhl J-C. Anomalous thermal expansion behaviour of Na8[AlSiO4]6(NO3)2-sodalite: P4̅3n to Pm3̅n phase transition by untilting and contraction of TO4 units. Z Kristallogr Cryst Mater. 2003;218:332–44.Google Scholar

  • [120]

    Barth TF, Posnjak E. Silicate structures of the cristobalite type: III. Structural relationship of high-cristobalite, alpha-carnegieite, and Na2SiO. Z Kristallogr. 1932;81:376–85.Google Scholar

  • [121]

    Baur WH, Joswig W. The phases of natrolite occurring during dehydration and rehydration studied by single crystal X-ray diffraction methods between room temperature and 923 K. Neues Jahrb Mineral Abh Monatsh. 1996;1996:171–87.Google Scholar

  • [122]

    Kahlenberg V, Böhm H. Crystal structure of hexagonal trinepheline – a new synthetic NaAlSiO4 modification. Am Mineral. 1998;83:631–7.CrossrefGoogle Scholar

  • [123]

    Isasi J, Daidouh A. Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure. Solid State Ionics. 2000;133:303–13.CrossrefGoogle Scholar

  • [124]

    Williams JJ, Smith CW, Evans KE, Lethbridge ZA, Walton RI. Off-axis elastic properties and the effect of extraframework species on structural flexibility of the NAT-type zeolites: simulations of structure and elastic properties. Chem Mater. 2007;19:2423–34.CrossrefGoogle Scholar

  • [125]

    Saniz R, Freeman AJ. Pressure effects on the electronic properties and superconductivity of the beta-pyrochlore oxides: AOs2O6 (A = Na, K, Rb, Cs). Phys Rev B. 2007;72:024522.Google Scholar

  • [126]

    Nishi F, Takéuchi Y. Cubic structure of sodium calcium germanate Na3.7Ca1.15Ge3O. Acta Crystallogr C. 1988;44:1867–9.CrossrefGoogle Scholar

  • [127]

    Michiue Y, Watanabe M. NaxCrxTi8-xO16, priderite with sodium ions in the tunnel structural study for stability and Na ion transport. J Solid State Chem. 1995;116:269–99.Google Scholar

  • [128]

    Vuli P, Kahlenberg V. On the high temperature behaviour of monoclinic trinepheline. Neues Jahrb Mineral Geol Palaeontol A. 2012;189:197–206.Google Scholar

  • [129]

    Serras P, Palomares V, Rojo T, Brand HE, Sharma N. Structural evolution of high energy density V(3+)/V(4+) mixed valent Na3V2O2 x (PO4)2F3-2x (x = 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction. J Mater Chem A. 2014;2:7766–79.CrossrefGoogle Scholar

  • [130]

    Brachtel G, Bukovec N, Hoppe R. Das erste Oxomanganat(III) mit Inselstruktur: zur Kenntnis von Na5(MnO4). Z Anorg Allg Chem. 1984;515:101–13.CrossrefGoogle Scholar

  • [131]

    Wang H-W, Bish DL. A P(H2O)-dependent structural phase transition in zeolite natrolite. Am Miner. 2008;93:1191–4.CrossrefGoogle Scholar

  • [132]

    Peacor DR, Bürger MJ. The determination and refinement of the structure of narsarsukite, Na2TiOSi4O10ʹ. Am Mineral. 1962;47:539–56.Google Scholar

  • [133]

    Wohlfahrt A. Kristallchemie von verbindungen und mischkristallen mit millarit-struktur. Heidelb Geowiss Abh. 1998;92:1–91.Google Scholar

  • [134]

    Zschornak M. 2015. dissertation, TU Bergakademie Freiberg. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-169703.

  • [135]

    Thomas LH. The calculation of atomic fields. Math Proc Cambridge Philos Soc. 1927;23:542–8.CrossrefGoogle Scholar

  • [136]

    Fermi E. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Z Phys. 1928;48:73–9.CrossrefGoogle Scholar

  • [137]

    Slater JC. A simplification of the Hartree-Fock method. Phys Rev. 1951;81:385.CrossrefGoogle Scholar

  • [138]

    Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864.Google Scholar

  • [139]

    Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133.Google Scholar

  • [140]

    Johannes MD, Love CT, Swider-Lyons K. Calculations in Li-ion battery materials. In: Breitkopf C, Swider-Lyons K, editors. Springer Handbook of Electrochemical Energy. Berlin Heidelberg: Springer, 2016:313–28.Google Scholar

  • [141]

    Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.CrossrefGoogle Scholar

  • [142]

    Jain A, Shin Y, Persson KA. Computational predictions of energy materials using density functional theory. Nat Rev Mater. 2016;1:15004.CrossrefGoogle Scholar

  • [143]

    Urban A, Seo D-H, Ceder G. Computational understanding of Li-ion batteries. NPJ Comput Mater. 2016;2:16002.CrossrefGoogle Scholar

  • [144]

    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem. 2009;1:37–46.CrossrefPubMedGoogle Scholar

  • [145]

    Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sánchez-Carrera RS, Granados-Focil S, et al. From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat Commun. 2011;2:437.PubMedCrossrefGoogle Scholar

  • [146]

    Pyzer-Knapp EO, Suh C, Gómez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu Rev Mater Res. 2015;45:195–216.CrossrefGoogle Scholar

  • [147]

    Sanvito S, Oses C, Xue J, Tiwari A, Zic M, et al. Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv. 2017;14:e1602241.Google Scholar

  • [148]

    Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314–9.CrossrefGoogle Scholar

  • [149]

    Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, et al. The atomic simulation environment – a Python library for working with atoms. J Phys Condens Matter. 2017;29:273002.CrossrefPubMedGoogle Scholar

  • [150]

    Curtarolo S, Setyawan W, Hart GL, Jahnatek M, Chepulskii RV, Taylor RH, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci. 2012;58:218–226.CrossrefGoogle Scholar

  • [151]

    Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.CrossrefPubMedGoogle Scholar

  • [152]

    Armand M, Tarascon J-M. Building better batteries. Nature. 2008;451:652–7.CrossrefPubMedGoogle Scholar

  • [153]

    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012;11:19–29.CrossrefGoogle Scholar

  • [154]

    Larcher D, Tarascon J-M. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19–29.PubMedCrossrefGoogle Scholar

  • [155]

    Kim S-W, Seo D-H, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mat. 2012;2:710–21.CrossrefGoogle Scholar

  • [156]

    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem Mater. 2011;23:3495–508.CrossrefGoogle Scholar

  • [157]

    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B. 1997;56:1354.CrossrefGoogle Scholar

  • [158]

    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1997;77:3865.Google Scholar

  • [159]

    Heyd J, Scuseria GE. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118:8207.CrossrefGoogle Scholar

  • [160]

    Anisimov VI, Zaanen J, Andersen OK. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B. 1991;44:943.CrossrefGoogle Scholar

  • [161]

    Kulik HJ, Cococcioni M, Scherlis DA, Marzari N. Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett. 2006;97:103001.PubMedCrossrefGoogle Scholar

  • [162]

    Ong SP, Chevrier VL, Ceder G. Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B. 2011;83:075112.CrossrefGoogle Scholar

  • [163]

    Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098.CrossrefGoogle Scholar

  • [164]

    Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785.CrossrefGoogle Scholar

  • [165]

    Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648.CrossrefGoogle Scholar

  • [166]

    Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys. 1999;110:6158.CrossrefGoogle Scholar

  • [167]

    Toumar AJ, Ong SP, Richards WD, Dacek S, Ceder G. Vacancy ordering in O3-type layered metal oxide sodium-ion battery cathodes. Phys Rev Appl. 2015;4:064002.CrossrefGoogle Scholar

  • [168]

    Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343:1210–1.PubMedCrossrefGoogle Scholar

  • [169]

    Kang K, Meng YS, Bréger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Sci. 2006;311:977–80.CrossrefGoogle Scholar

  • [170]

    Whittingham MS. Ultimate limits to intercalation reactions for lithium batteries. Chem Rev. 2014;114:11414–43.CrossrefPubMedGoogle Scholar

  • [171]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636–82.PubMedCrossrefGoogle Scholar

  • [172]

    Canepa P, Gautam GS, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G. Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev. 2017;117:4287–341.CrossrefPubMedGoogle Scholar

  • [173]

    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. Mg rechargeable batteries: an on-going challenge. Energy Environ Sci. 2013;6:2265–79.CrossrefGoogle Scholar

  • [174]

    Rong Z, Malik R, Canepa P, Gautam GS, Liu M, Jain A, Persson K, Ceder G. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016–21.CrossrefGoogle Scholar

  • [175]

    Canepa P, Bo S-H, Gautam GS, Key B, Richards WD, Shi T, et al. High magnesium mobility in ternary spinel chalcogenides. Nat Commun. 2017;8:1759.CrossrefPubMedGoogle Scholar

  • [176]

    Pechukas P. Transition State Theory. Annu Rev Phys Chem. 1981;32:159–77.CrossrefGoogle Scholar

  • [177]

    Cabrera N, Mott NF. Theory of the oxidation of metals. Reports on Progress in Physics 1949;12:163–84.CrossrefGoogle Scholar

  • [178]

    Yashima M, Itoh M, Inaguma Y, Morii Y. Crystal Structure and Diffusion Path in the Fast Lithium-Ion Conductor La0.62Li0.16TiO3. J Am Chem Soc. 2005;127:3491–3495..CrossrefPubMedGoogle Scholar

  • [179]

    Sheppard D, Terrel R, Henkelman G. Optimization methods for finding minimum energy paths. J Chem Phys. 2008;128:134106.PubMedCrossrefGoogle Scholar

  • [180]

    Miara LJ, Suzuki N, Richards WD, Wang Y, Kim JC, Ceder G. Li-ion conductivity in Li9S3N. J Mater Chem A. 2015;3:20338–44.CrossrefGoogle Scholar

  • [181]

    Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ Sci. 2013;6:148–56.CrossrefGoogle Scholar

  • [182]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, et al. A lithium superionic conductor. Nat Mater. 2011;10:682–686.PubMedCrossrefGoogle Scholar

  • [183]

    Bron P, Johansson S, Zick K, Schmedt Auf Der Günne J, Dehnen S, Roling B. Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc. 2013;135:15694–7.PubMedCrossrefGoogle Scholar

  • [184]

    Richards WD, Tsujimura T, Miara LJ, Wang Y, Kim JC, Ong SP, Uechi I, Suzuki N, Ceder G. Design and synthesis of the superionic conductor Na10SnP2S12ʹ. Nat Commun. 2016;7:11009.CrossrefPubMedGoogle Scholar

  • [185]

    Miara LJ, Ong SP, Mo Y, Richards WD, Park Y, Lee J-M, Lee HS, Ceder G. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x–Y(La3–XRbx)(Zr2–YTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: a first principles investigation. Chem Mater. 2013;25:3048–55.CrossrefGoogle Scholar

  • [186]

    Kuhn A, Gerbig O, Zhu C, Falkenberg F, Maier J, Lotsch BV. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys Chem Chem Phys. 2014;16:14669–74.PubMedCrossrefGoogle Scholar

  • [187]

    Malik R, Abdellahi A, Ceder G. A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J Electrochem Soc. 2013;160:A3179–97.Google Scholar

  • [188]

    Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, Persson KA. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ Sci. 2015;8:964–74.CrossrefGoogle Scholar

  • [189]

    Gautam GS, Canepa P, Abdellahi A, Urban A, Malik R, Ceder G. The intercalation phase diagram of Mg in V2O5 from first-principles. Chem Mater. 2015;27:3733–42.CrossrefGoogle Scholar

  • [190]

    Gautam GS, Canepa P, Malik R, Liu M, Persson K, Ceder G. First-principles evaluation of multi-valent cation insertion into orthorhombic V2O. Chem Commun. 2015;51:13619–22.CrossrefGoogle Scholar

  • [191]

    Maxisch T, Zhou F, Ceder G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B. 2006;73:104301.CrossrefGoogle Scholar

  • [192]

    Xu B, Meng S. Factors affecting Li mobility in spinel LiMn2O4 – a first-principles study by GGA and GGA + U methods. J Power Sources. 2010;195:4971–6.CrossrefGoogle Scholar

  • [193]

    Hannah DC, Gautam GS, Canepa P, Rong Z, Ceder G. Magnesium ion mobility in post-spinels accessible at ambient pressure. Chem Commun. 2017;53:5171–4.CrossrefGoogle Scholar

  • [194]

    Sun X, Blanc L, Nolis GM, Bonnick P, Cabana J, Nazar LF. NaV1.25Ti0.75O4: a potential post spinel cathode material for Mg batteries. Chem Mater. 2018;30:121–8.CrossrefGoogle Scholar

  • [195]

    Mukherjee A, Sa N, Phillips PJ, Burrell A, Vaughey J, Klie RF. Direct Investigation of Mg intercalation into the orthorhombic V2O5 cathode using atomic-resolution transmission electron microscopy. Chem Mater. 2017;29:2218–26.CrossrefGoogle Scholar

  • [196]

    Rong Z, Kichaev D, Canepa P, Huang W, Ceder G. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. J Chem Phys. 2016;145:074112.CrossrefPubMedGoogle Scholar

  • [197]

    Rong Z, Xiao P, Liu M, Huang W, Hannah DC, Scullin W, Persson KA, Ceder G. Fast Mg2+ diffusion in Mo3(PO4)3O for Mg batteries. Chem Commun. 2017;53:7998–8001.CrossrefGoogle Scholar

  • [198]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van De Walle CG. First-principles calculations for point defects in solids. Rev Mod Phys. 2014;86:253.CrossrefGoogle Scholar

  • [199]

    Islam M, Driscoll D, Fisher C, Slater P. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater. 2005;17:5085–92.CrossrefGoogle Scholar

  • [200]

    Morgan D, Van Der Ven A, Ceder G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett. 2004;7:A30–2.Google Scholar

  • [201]

    Maragliano L, Vanden-Eijnden E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006;426:168–75.CrossrefGoogle Scholar

  • [202]

    Laio A, Parrinello M. Escaping free-energy minima. PNAS. 2002;99:12562–6.CrossrefGoogle Scholar

  • [203]

    Abrams C, Bussi G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy. 2014;16:163–99.Google Scholar

  • [204]

    Boulfelfel SE, Seifert G, Leoni S. Atomistic investigation of Li+ diffusion pathways in the olivine LiFePO4 cathode material. J Mater Chem. 2011;21:16365–72.CrossrefGoogle Scholar

  • [205]

    Johnston W, Heikes R, Sestrich D. The preparation, crystallography, and magnetic properties of the LixCo(1-x)O system. J Phys Chem Solids. 1958;7:1–13.CrossrefGoogle Scholar

  • [206]

    Mizushima K, Jones P, Wiseman P, Goodenough JB. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15:783–9.CrossrefGoogle Scholar

  • [207]

    Padhi AK, Nanjundaswamy K, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144:1188–94.CrossrefGoogle Scholar

  • [208]

    Fuchs JN. Über ein neues mineral (triphylin). Adv Synth Catal. 1834;3:98–104.Google Scholar

  • [209]

    Fuchs JN. Vermischte Notizen. J Prakt Chem. 1835;5:316–24.CrossrefGoogle Scholar

  • [210]

    Björling CO, Westgren A. Minerals of the varuträsk pegmatite: IX. X-ray Studies on triphylite, varulito, and their oxidation products. Geol Foeren Stockholm Foerh. 1938;60:67–72.CrossrefGoogle Scholar

  • [211]

    Yakubovich OV, Simonov MA, Belov NV. The crystal structure of a synthetic triphylite LiFe[PO4]. Sov Phys Dokl. 1977;22:347.Google Scholar

About the article

Published Online: 2018-10-02


Citation Information: Physical Sciences Reviews, 20180044, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0044.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in