Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Prediction of toxicity of secondary metabolites

Ricardo Bruno Hernández-Alvarado
  • Instituto de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abraham Madariaga-Mazón
  • Instituto de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karina Martinez-Mayorga
  • Corresponding author
  • Instituto de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-20 | DOI: https://doi.org/10.1515/psr-2018-0107

Abstract

The prediction of toxicological endpoints has gained broad acceptance; it is widely applied in early stages of drug discovery as well as for impurities obtained in the production of generic or equivalent products. In this work, we describe methodologies for the prediction of toxicological endpoints compounds, with a particular focus on secondary metabolites. Case studies include toxicity prediction of natural compound databases with anti-diabetic, anti-malaria and anti-HIV properties.

Keywords: computational toxicology; secondary metabolites; drug discovery; pesticides; predictive models; QSAR

References

  • [1]

    Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des. 2007;13:3494–504.CrossrefPubMedGoogle Scholar

  • [2]

    Tropsha A, Wang SX. QSAR modeling of GPCR ligands: methodologies and examples of applications. In: Bourne H, Horuk R, Kuhnke J, Michel H, editors. GPCRs: from deorphanization to lead structure identification. Berlin: Springer, 2007:49–74.Google Scholar

  • [3]

    Veith GD. On the nature, evolution and future of quantitative structure-activity relationships (QSAR) in toxicology. SAR QSAR Environ Res. 2004;15:323–30.CrossrefPubMedGoogle Scholar

  • [4]

    Demchuk E, Ruiz P, Chou S, Fowler BA. SAR/QSAR methods in public health practice. Toxicol Appl Pharmacol. 2011;254:192–7.CrossrefPubMedGoogle Scholar

  • [5]

    Ruiz P, Begluitti G, Tincher T, Wheeler J, Mumtaz M. Prediction of acute mammalian toxicity using QSAR methods: a case study of sulfur mustard and its breakdown products. Molecules. 2012;17:8982–9001.PubMedCrossrefGoogle Scholar

  • [6]

    Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD. 2014. DOI: 10.1787/9789264085442-en.

  • [7]

    Gómez-Jiménez G, Gonzalez-Ponce K, Castillo-Pazos DJ, Madariaga-Mazón A, Barroso-Flores J, Cortés-Guzman F, et al. The OECD principles for (Q)SAR models in the context of knowledge discovery in databases (KDD). In: Karabencheva-Christova T, Christov C, editor(s). Advances in protein chemistry and structural biology Vol. 113. Amsterdam: Elsevier, 2018:85–117.PubMedGoogle Scholar

  • [8]

    Pu L, Naderi M, Liu T, Wu H, Mukhopadhyay S, Brylinski M. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol. 2019;20:2.CrossrefPubMedGoogle Scholar

  • [9]

    Mishra N, Singla D, Agarwal S, Consortium OSDD, Raghava GPS. ToxiPred: a server for prediction of aqueous toxicity of small chemical molecules in T. Pyriformis. J Transl Toxicol. 2014;1:21–7.Google Scholar

  • [10]

    Drwal , Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42:53–8.CrossrefGoogle Scholar

  • [11]

    Wexler P. TOXNET: an evolving web resource for toxicology and environmental health information. Toxicol. 2001;157:3–10.CrossrefGoogle Scholar

  • [12]

    Richard A, Williams C. DSSTox chemical-index files for exposure-related experiments in arrayexpress and gene expression omnibus: enabling toxico-chemogenomics data linkages. Bioinformatics. 2009;25:692–4.CrossrefPubMedGoogle Scholar

  • [13]

    Richard A, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, et al. ToxCast chemical landscape: paving the road to twenty-first century toxicology. Chem Res Toxicol. 2016;26:1225–51.Google Scholar

  • [14]

    Judson R, Richard A, Dix D, Houck K, Elloumi F, Martin M, et al. ACToR–aggregated computational toxicology resource. Toxicol Appl Pharmacol. 2008;233:7–13.PubMedCrossrefGoogle Scholar

  • [15]

    Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Chem inform. 2017;9:61.CrossrefPubMedGoogle Scholar

  • [16]

    Fay M, Donohue J, De Rosa C. ATSDR evaluation of health effects of chemicals. VI. Di(2-ethylhexyl)phthalate. Agency for Toxic Substances and Disease Registry. Toxicol Ind HealthToxicol. 1999;15:651–746.CrossrefGoogle Scholar

  • [17]

    Review of EPA´s Integrated Risk Information System (IRIS) Process. EPA 2014. DOI: 10.17226/18764.

  • [18]

    Schmidt U, Struck S, Gruening B, Hossbach J, Jaeger IS, Parol R, et al. SuperToxic: a comprehensive database of toxic compounds. Nucleic Acids Res. 2008;37:D295–9.PubMedGoogle Scholar

  • [19]

    Pineda S, Chaumeil P, Kunert A, Kaas Q, Thang M, Le L, et al. ArachnoServer 3.0: an online resource for automated discovery, analysis and annotation of spider toxins. Bioinformatics. 2018;34:1074–6. DOI: .CrossrefPubMedGoogle Scholar

  • [20]

    Bhatia S, Schultz T, Roberts D, Shen J, Kromidas L, Api AM. Comparison of Cramer classification between Toxtree, the OECD QSAR Toolbox and expert judgment. Regul Toxicol Pharmacol. 2015;71:52–62.PubMedCrossrefGoogle Scholar

  • [21]

    Sushko I, Salmina E, Potemkin VA, Poda G, Tetko IV. ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J Chem Inf Model. 2012;52:2310–16.CrossrefPubMedGoogle Scholar

  • [22]

    Loizou G, Hogg A. MEGen: a physiologically based pharmacokinetic model generator. Front Pharmacol. 2011;2:56.PubMedGoogle Scholar

  • [23]

    Bessems JG, Loizou G, Krishnan K, Clewell HJ, Bernasconi C, Bois F, et al. PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment. Regul Toxicol Pharmacol. 2014;68:119–39.CrossrefPubMedGoogle Scholar

  • [24]

    Gini G, Franchi AM, Manganaro A, Golbamaki A, Benfenati E. ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. SAR QSAR Environ Res. 2014;25:999–1011.PubMedCrossrefGoogle Scholar

  • [25]

    Chaudhry Q, Piclin N, Cotterill J, Pintore M, Price NR, Chrétien JR, et al. Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J. 2010;4:S5.PubMedCrossrefGoogle Scholar

  • [26]

    Gramatica P, Cassani S, Chirico N. QSARINS-chem: insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem. 2014;35:1036–44.CrossrefPubMedGoogle Scholar

  • [27]

    Capuzzi SJ, Kim IS-J, Lam WI, Thornton TE, Muratov EN, Pozefsky D, et al. Chembench: a publicly accessible, integrated cheminformatics portal. J Chem Inf Model. 2017;57:105–8.CrossrefPubMedGoogle Scholar

  • [28]

    Ruusmann V, Sild S, Maran U. QSAR DataBank repository: open and linked qualitative and quantitative structure–activity relationship models. J Cheminform. 2015;7:32.CrossrefPubMedGoogle Scholar

  • [29]

    LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol. 2014;27:1081–91.PubMedCrossrefGoogle Scholar

  • [30]

    Mehta R, Schrader TJ. Carcinogenic substances in food: mechanisms. In: Caballero B, Finglas P, Toldra F, editor(s). Encyclopedia of food sciences and nutrition. USA: Academic Press, 2005:117.Google Scholar

  • [31]

    Matsumoto M, Kano H, Suzuki M, Katagiri T, Umeda Y, Fukushima S. Carcinogenicity and chronic toxicity of hydrazine monohydrate in rats and mice by two-year drinking water treatment. Regul Toxicol Pharmacol. 2016;76:63–73.PubMedCrossrefGoogle Scholar

  • [32]

    Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. In: Lotti M, Bleecker M, editor(s). Handbook of clinical neurology Vol. 131. Amsterdam: Elsevier, 2015:149–68.PubMedGoogle Scholar

  • [33]

    Müller L, Mauthe RJ, Riley CM, Andino MM, De Antonis D, Beels C, et al. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul Toxicol Pharmacol. 2006;44:198–211.PubMedCrossrefGoogle Scholar

  • [34]

    Kovacic P, Somanathan R. Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol. 2014;34:810–24.CrossrefPubMedGoogle Scholar

  • [35]

    Reddy AV, Jaafar J, Umar K, Majid ZA, Aris AB, Talib J, et al. Identification, control strategies, and analytical approaches for the determination of potential genotoxic impurities in pharmaceuticals: a comprehensive review. J Sep Sci. 2015;38:764–79.PubMedCrossrefGoogle Scholar

  • [36]

    Gehring R, Van Der Merwe D. Toxicokinetic-toxicodynamic modeling. In: Gupta R, editor. Biomarkers in toxicology. USA: Academic Press, 2014.Google Scholar

  • [37]

    Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016;6:147–72.PubMedCrossrefGoogle Scholar

  • [38]

    Ding B, Hua C, Kepert CJ, D’Alessandro DM. Influence of structure–activity relationships on through-space intervalence charge transfer in metal–organic frameworks with cofacial redox-active units. Chem Sci. 2019;10:1392–400.CrossrefPubMedGoogle Scholar

  • [39]

    Romero-Estudillo I, Viveros-Ceballos JL, Cazares-Carreño O, González-Morales A, Flores de Jesus B, López-Castillo M, et al. Synthesis of new α-aminophosphonates: evaluation as anti-inflammatory agents and QSAR studies. Bioorg Med Chem. 2018;27:2376–86.PubMedGoogle Scholar

  • [40]

    Begam BF, Kumar JS. Computer assisted QSAR/QSPR approaches – a review. Indian J Sci Technol. 2016;9:8.Google Scholar

  • [41]

    Yousefinejad S, Hemmateenejad B. Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom Intell Lab Syst. 2015;149:177–204.CrossrefGoogle Scholar

  • [42]

    Medina-Franco JL, Navarrete-Vázquez G, Méndez-Lucio O. Activity and property landscape modeling is at the interface of chemoinformatics and medicinal chemistry. Future Med Chem. 2015;7:1197–211.PubMedCrossrefGoogle Scholar

  • [43]

    Maggiora GM. On outliers and activity cliffs – why QSAR often disappoints. J Chem Inf Model. 2006;46:1535.CrossrefPubMedGoogle Scholar

  • [44]

    Dimova D, Bajorath J. Advances in activity cliff research. Mol Inform. 2016;35:181–91.PubMedCrossrefGoogle Scholar

  • [45]

    Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 2007;25:786–93.PubMedCrossrefGoogle Scholar

  • [46]

    Allen CHG, Koutsoukas A, Cortés-Ciriano I, Murrell DS, Malliavin TE, Glen RC, et al. Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data. Toxicol Res (Camb). 2016;5:883–94.CrossrefPubMedGoogle Scholar

  • [47]

    Gleeson MP, Modi S, Bender A, Robinson RL, Kirchmair J, Promkatkaew M, et al. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des. 2012;18:1266–91.CrossrefPubMedGoogle Scholar

  • [48]

    Kalgutkar A, Didiuk M. Structural alerts, reactive metabolites, and protein covalent binding: how reliable are these attributes as predictors of drug toxicity? Chem Biodivers. 2009;6:2115–37.CrossrefPubMedGoogle Scholar

  • [49]

    Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH. Timing of new black box warnings and withdrawals for prescription medications. J Am Med Assoc. 2002;287:2215–20.CrossrefGoogle Scholar

  • [50]

    Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016;3:80.Google Scholar

  • [51]

    Glück J, Buhrke T, Frenzel F, Braeuning A, Lampen A. In silico genotoxicity and carcinogenicity prediction for food-relevant secondary plant metabolites. Food Chem Toxicol. 2018;116:298–306.CrossrefPubMedGoogle Scholar

  • [52]

    Arvidson KB, Valerio LG, Diaz M, Chanderbhan RF. In silico toxicological screening of natural products. Toxicol Mech Methods. 2008;18:229–32.PubMedCrossrefGoogle Scholar

  • [53]

    Ruiz-Rodríguez MA, Vedani A, Flores-Mireles AL, Cháirez-Ramírez MH, Gallegos-Infante JA, González-Laredo RF. In silico prediction of the toxic potential of lupeol. Chem Res Toxicol. 2017;30:1562–71.CrossrefPubMedGoogle Scholar

  • [54]

    Valerio LG, Arvidson KB, Chanderbhan RF, Contrera JF. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol Appl Pharmacol. 2007;222:1–16.CrossrefPubMedGoogle Scholar

  • [55]

    Münzner R, Renner HW. Mutagenicity testing of quinine with submammalian and mammalian systems. Toxicol. 1983;26:173–8.CrossrefGoogle Scholar

  • [56]

    Ramel C, Alekperov UK, Ames BN, Kada T, Wattenberg LW. Inhibitors of mutagenesis and their relevance to carcinogenesis: report by ICPEMC expert group on antimutagens and desmutagens. Mutat Res Genet Toxicol. 1986;39:511–7.Google Scholar

  • [57]

    Van Went GF. Mutagenicity testing of 3 hallucinogens: LSD, psilocybin and 9-THC using the micronucleus test. Experientia. 1978;34:342–5.Google Scholar

  • [58]

    Noriega-Colima K, Martinez-Mayorga K, Madariaga-Mazon A. DiaNat-DB: una base de datos de agentes antidiabéticos de origen natural: generación y análisis d elas propiedades fisicoquímicas y estructurales. Available at: http://132.248.9.195/ptd2019/marzo/0786633/Index.html. 2018.

  • [59]

    Onguéné A, Simoben C, Fotso G, Andrae-Marobela K, Khalid S, Ngadjiu B, et al. In silico toxicity profiling of natural product compound libraries from African flora with anti-malarial and anti-HIV properties. Comput Biol Chem. 2018;72:136–49.CrossrefPubMedGoogle Scholar

  • [60]

    Ntie-Kang A, Telukunta KK, Döring K, Simoben CV, Moumbock AFA, Malange YI, et al. NANPDB: a resource for natural products from Northern African sources. J Nat Prod. 2017;80:2067–76.CrossrefPubMedGoogle Scholar

About the article

Published Online: 2019-08-20


Citation Information: Physical Sciences Reviews, 20180107, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0107.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in