Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Computer-based techniques for lead identification and optimization I: Basics

Annalisa Maruca
  • Corresponding author
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesca Alessandra Ambrosio
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Lupia
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Isabella Romeo
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberta Rocca
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Department of Experimental and Clinical Medicine, Magna Graecia University and Traslational Medicinal Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Federica Moraca
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia 4, I-80126 Napoli, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carmine Talarico
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Donatella Bagetta
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raffaella Catalano
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giosuè Costa
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Artese
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefano Alcaro
  • Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-11 | DOI: https://doi.org/10.1515/psr-2018-0113

Abstract

This chapter focuses on computational techniques for identifying and optimizing lead molecules, with a special emphasis on natural compounds. A number of case studies have been specifically discussed, such as the case of the naphthyridine scaffold, discovered through a structure-based virtual screening (SBVS) and proposed as the starting point for further lead optimization process, to enhance its telomeric RNA selectivity. Another example is the case of Liphagal, a tetracyclic meroterpenoid extracted from Aka coralliphaga, known as PI3Kα inhibitor, provide an evidence for the design of new active congeners against PI3Kα using molecular dynamics (MD) simulations. These are only two of the numerous examples of the computational techniques’ powerful in drug design and drug discovery fields. Finally, the design of drugs that can simultaneously interact with multiple targets as a promising approach for treating complicated diseases has been reported. An example of polypharmacological agents are the compounds extracted from mushrooms identified by means of molecular docking experiments. This chapter may be a useful manual of molecular modeling techniques used in the lead-optimization and lead identification processes.

Keywords: drug discovery; drug-like properties; virtual screening; pharmacophore models; molecular recognition; molecular dynamics

References

  • [1]

    Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.PubMedCrossrefGoogle Scholar

  • [2]

    Langer T, Hoffmann RD. Virtual screening: an effective tool for lead structure discovery? Curr Pharm Des. 2001;7:509–27.PubMedCrossrefGoogle Scholar

  • [3]

    Artese A, Alcaro S, Moraca F, Reina R, Ventura M, Costantino G, et al. State-of-the-art and dissemination of computational tools for drug-design purposes: a survey among Italian academics and industrial institutions. Future Med Chem. 2013;5:907–27.PubMedCrossrefGoogle Scholar

  • [4]

    Maruca A, Moraca F, Rocca R, Molisani F, Alcaro F, Gidaro MC, et al. Chemoinformatic database building and in silico hit-identification of potential multi-targeting bioactive compounds extracted from mushroom species. Molecules. 2017;22:1571.CrossrefGoogle Scholar

  • [5]

    Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. 2014;14:1923–38.CrossrefPubMedGoogle Scholar

  • [6]

    Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual screening. Drug Discov Today. 2011;16:372–6.PubMedCrossrefGoogle Scholar

  • [7]

    Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins. 2001;43:217–26.PubMedCrossrefGoogle Scholar

  • [8]

    Lauro G, Masullo M, Piacente S, Riccio R, Bifulco G. Inverse Virtual Screening allows the discovery of the biological activity of natural compounds. Bioorg Med Chem. 2012;20:3596–602.PubMedCrossrefGoogle Scholar

  • [9]

    Vyas V, Jain A, Jain A, Gupta A. Virtual screening: a fast tool for drug design. SciPharm. 2008;76:333–60.Google Scholar

  • [10]

    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.CrossrefPubMedGoogle Scholar

  • [11]

    Cheng F, Li W, Liu G, Tang Y. In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem. 2013;13:1273–89.PubMedCrossrefGoogle Scholar

  • [12]

    Zuegg J, Cooper MA. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. Curr Top Med Chem. 2012;12:1500–13.PubMedCrossrefGoogle Scholar

  • [13]

    Blagg J. Structure–activity relationships for in vitro and in vivo toxicity. Annu Rep Med Chem. 2006;41:353–68.Google Scholar

  • [14]

    Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–40.CrossrefPubMedGoogle Scholar

  • [15]

    Metz JT, Huth JR, Hajduk PJ. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J Comput Aided Mol Des. 2007;21:139–44.PubMedCrossrefGoogle Scholar

  • [16]

    Athanasiadis E, Cournia Z, Spyrou G. ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics. 2012;28:3002–3.CrossrefPubMedGoogle Scholar

  • [17]

    Lagorce D, Sperandio O, Galons H, Miteva MA, Villoutreix BO. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinf. 2008;9:396.CrossrefGoogle Scholar

  • [18]

    Lagorce D, Maupetit J, Baell J, Sperandio O, Tuffléry P, Miteva MA, et al. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics. 2011;27:2018–20.CrossrefGoogle Scholar

  • [19]

    Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A. The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J Chem Inf Model. 2009;49:2742–8.PubMedCrossrefGoogle Scholar

  • [20]

    Sadowski J, Rudolph C, Gasteiger J. The generation of 3D-models of host-guest. Anal Chim Acta. 1992;265:233–41.CrossrefGoogle Scholar

  • [21]

    Milletti F, Vulpetti A. Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J Chem Inf Model. 2010;50:1062–74.CrossrefPubMedGoogle Scholar

  • [22]

    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.PubMedCrossrefGoogle Scholar

  • [23]

    LigPrep. Version 3.9. New York (USA): Schrödinger LLC, 2016.Google Scholar

  • [24]

    Canada, H3A 2R7: Montreal, QC. Molecular Operating Environment (MOE), St West, Suite #910, 2013.Google Scholar

  • [25]

    MAPS. Version 3.4. Paris, France: Scienomics SARL, 2014.Google Scholar

  • [26]

    http://wiki.uoft.bkslab.org/index.php/Preparing_the_ligand.

  • [27]

    http://www.accelrys.com.

  • [28]

    Hyperchem. Gainesville, FL: HyperCube.Google Scholar

  • [29]

    Grinter SZ, Yan C, Huang SY, Jiang L, Zou X. Automated large-scale file preparation, docking, and scoring: evaluation of ITScore and STScore using the 2012 community structure-activity resource benchmark. J Chem Inf Model. 2013;53:1905–14.PubMedCrossrefGoogle Scholar

  • [30]

    Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998).Google Scholar

  • [31]

    Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45:160–9.PubMedCrossrefGoogle Scholar

  • [32]

    Kirchmair J, Markt P, Distinto S, Wolber G, Langer T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection–what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22:213–28.CrossrefGoogle Scholar

  • [33]

    Braga RC, Andrade CH. Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr Top Med Chem. 2013;13:1127–38.CrossrefPubMedGoogle Scholar

  • [34]

    Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem. 2005;48:2534–47.PubMedCrossrefGoogle Scholar

  • [35]

    Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–7.CrossrefPubMedGoogle Scholar

  • [36]

    Sheridan RP, Singh SB, Fluder EM, Kearsley SK. Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J Chem Inf Comput Sci. 2001;41:1395–406.PubMedCrossrefGoogle Scholar

  • [37]

    McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol. 2007;11:494–502.PubMedCrossrefGoogle Scholar

  • [38]

    Sun H. Pharmacophore-based virtual screening. Curr Med Chem. 2008;15:1018–24.CrossrefPubMedGoogle Scholar

  • [39]

    Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15:444–50.PubMedCrossrefGoogle Scholar

  • [40]

    Ewing TJA, Kuntz ID. Critical evaluation of search algorithms for automated molecular docking and database screening. J Comput Chem. 1997;18:1175–89.CrossrefGoogle Scholar

  • [41]

    Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996;261:470–89.CrossrefPubMedGoogle Scholar

  • [42]

    Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267:727–48.CrossrefPubMedGoogle Scholar

  • [43]

    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.PubMedCrossrefGoogle Scholar

  • [44]

    Abagyan R, Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994;235:983–1002.PubMedCrossrefGoogle Scholar

  • [45]

    McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des. 2012;26:897–906.PubMedCrossrefGoogle Scholar

  • [46]

    Halgren T. New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des. 2007;69:146–8.PubMedCrossrefGoogle Scholar

  • [47]

    Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): theory and application. J Chem Inf Model. 2007;47:279–94.CrossrefPubMedGoogle Scholar

  • [48]

    Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985;28:849–57.PubMedCrossrefGoogle Scholar

  • [49]

    Cross S, Baroni M, Goracci L, Cruciani G. GRID-based three-dimensional pharmacophores I: fLAPpharm, a novel approach for pharmacophore elucidation. J Chem Inf Model. 2012;52:2587–98.CrossrefPubMedGoogle Scholar

  • [50]

    Catalyst. Version 4.11. San Diego, CA, USA: Accelry’s Inc., 2007.Google Scholar

  • [51]

    https://www.ncbi.nlm.nih.gov/.

  • [52]

    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–13.CrossrefPubMedGoogle Scholar

  • [53]

    Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42:D1083–90.PubMedCrossrefGoogle Scholar

  • [54]

    http://www.chemspider.com.

  • [55]

    https://chemaxon.com/products/marvin.

  • [56]

    https://chemaxon.com/products/instant-jchem.

  • [57]

    http://www.mutalig.eu/.

  • [58]

    http://www.unicz.chemotheca.it.

  • [59]

    Ortuso F, Bagetta D, Maruca A, Talarico C, Bolognesi ML, Haider N, et al. The Mu.Ta.Lig. Chemotheca: a community-populated molecular database for multi-target ligands identification and compound-repurposing. Front Chem. 2018;6:130.CrossrefPubMedGoogle Scholar

  • [60]

    Rocca R, Moraca F, Costa G, Nadai M, Scalabrin M, Talarico C, et al. Identification of G-quadruplex DNA/RNA binders: structure-based virtual screening and biophysical characterization. Biochim Biophys Acta Gen Subj. 2017;1861:1329–40.PubMedCrossrefGoogle Scholar

  • [61]

    Brooks B, Karplus M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA. 1983;80:6571–5.CrossrefGoogle Scholar

  • [62]

    Case DA, Karplus M. Dynamics of ligand binding to heme proteins. J Mol Biol. 1979;132:343–68.CrossrefPubMedGoogle Scholar

  • [63]

    Colonna-Cesari F, Perahia D, Karplus M, Eklund H, Brädén CI, Tapia O. Interdomain motion in liver alcohol dehydrogenase. Structural and energetic analysis of the hinge bending mode. J Biol Chem. 1986;261:15273–80.PubMedGoogle Scholar

  • [64]

    Harvey SC, Prabhakaran M, Mao B, McCammon JA. Phenylalanine transfer RNA: molecular dynamics simulation. Science. 1984;223:1189–91.CrossrefPubMedGoogle Scholar

  • [65]

    Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9:646–52.PubMedCrossrefGoogle Scholar

  • [66]

    Fichthorn KA, Weinberg WH. Theoretical foundations of dynamical Monte Carlo simulations. J Chem Phys. 1991;95:1090–6.CrossrefGoogle Scholar

  • [67]

    Minary P, Levitt M. Probing protein fold space with a simplified model. J Mol Biol. 2008;375:920–33.PubMedCrossrefGoogle Scholar

  • [68]

    Huber T, van Gunsteren WF. SWARM-MD: searching conformational space by cooperative molecular dynamics. J Phys Chem A. 1998;102:5937-43.Google Scholar

  • [69]

    Larsen EM, Wilson MR, Taylor RE. Conformation-activity relationships of polyketide natural products. Nat Prod Rep. 2015;32:1183–206.CrossrefPubMedGoogle Scholar

  • [70]

    Allen MP. Computer simulation of liquids.. Oxford: Oxford University Press, 2007.Google Scholar

  • [71]

    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31:671–90.Google Scholar

  • [72]

    Arfken G. “The method of steepest descents.” § 7.4. Mathematical methods for physicists, 3rd ed. Orlando, FL: Academic Press, 1985:428–36.Google Scholar

  • [73]

    Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand. 1952;49:409–36.CrossrefGoogle Scholar

  • [74]

    Nocedal J, Wright SJ. Numerical optimization Vol. 35. New York: Springer, 2006.Google Scholar

  • [75]

    Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–80.PubMedCrossrefGoogle Scholar

  • [76]

    Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. PhysRev. 1965;140:A1133.Google Scholar

  • [77]

    Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.CrossrefGoogle Scholar

  • [78]

    Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem. 2015;91:4–14.PubMedCrossrefGoogle Scholar

  • [79]

    Rocca R, Moraca F, Costa G, Alcaro S, Distinto S, Maccioni E, et al. Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations. Molecules. 2014;20:206–23.CrossrefPubMedGoogle Scholar

  • [80]

    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–802.CrossrefPubMedGoogle Scholar

  • [81]

    Harris SJ, Parry RV, Westwick J, Ward SG. Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. J Biol Chem. 2008;283:2465–9.CrossrefGoogle Scholar

  • [82]

    Wymann MP, Zvelebil M, Laffargue M. Phosphoinositide 3-kinase signalling which way to target? Trends Pharmacol Sci. 2003;24:366–76.PubMedCrossrefGoogle Scholar

  • [83]

    Sundstrom TJ, Anderson AC, Wright DL. Inhibitors of phosphoinositide-3-kinase: a structure-based approach to understanding potency and selectivity. Org Biomol Chem. 2009;7:840–50.PubMedCrossrefGoogle Scholar

  • [84]

    Marion F, Williams DE, Patrick BO, Hollander I, Mallon R, Kim SC, et al. Liphagal, a Selective inhibitor of PI3 kinase alpha isolated from the sponge akacoralliphaga: structure elucidation and biomimetic synthesis. Org Lett. 2006;8:321–4.CrossrefPubMedGoogle Scholar

  • [85]

    Li T, Wang G. Computer-aided targeting of the PI3K/Akt/mTOR pathway: toxicity reduction and ther-apeutic opportunities. Int J Mol Sci. 2014;15:18856–91.CrossrefGoogle Scholar

  • [86]

    Gao Y, Ma Y, Yang G, Li Y. Molecular dynamics simulations to investigate the binding mode of the natural product liphagal with phosphoinositide 3-Kinase α. Molecules. 2016;21:857.CrossrefGoogle Scholar

  • [87]

    Ryckbosch SM, Wender PA, Pande VS. Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nat Commun. 2017;8:6.PubMedCrossrefGoogle Scholar

  • [88]

    Limongelli V, Bonomi M, Marinelli L, Gervasio FL, Cavalli A, Novellino E, et al. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc Natl Acad Sci USA. 2010;107:5411–6.CrossrefGoogle Scholar

  • [89]

    Troussicot L, Guillière F, Limongelli V, Walker O, Lancelin JM. Funnel-metadynamics and solution NMR to estimate protein−ligand affinities. J Am Chem Soc. 2015;137:1273–81.PubMedCrossrefGoogle Scholar

  • [90]

    Yuan X, Raniolo S, Limongelli V, Xu Y. The molecular mechanism underlying ligand binding to the membrane-embedded site of a g-protein-coupled receptor. J Chem Theory Comput. 2018;14:2761–70.CrossrefPubMedGoogle Scholar

About the article

Published Online: 2019-01-11


Citation Information: Physical Sciences Reviews, 20180113, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0113.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in