Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

“Drug-likeness” properties of natural compounds

Fidele Ntie-Kang
  • Corresponding author
  • University of Buea, Pharmacochemistry Research Group, Chemistry Department, P. O. Box 63 Buea Buea, Cameroon
  • Department of Pharmaceutical Chemistry, Martin-Luther-Universitat Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle (Saale), Germany
  • Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6 Dejvice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kennedy D. Nyongbela
  • Corresponding author
  • University of Buea, Pharmacochemistry Research Group, Chemistry Department, P. O. Box 63 Buea Buea, Cameroon
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Godfred A. Ayimele
  • University of Buea, Pharmacochemistry Research Group, Chemistry Department, P. O. Box 63 Buea Buea, Cameroon
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suhaib Shekfeh
Published Online: 2019-09-04 | DOI: https://doi.org/10.1515/psr-2018-0169


Our previous work was focused on the fundamental physical and chemical concepts behind “drug-likeness” and “natural product (NP)-likeness”. Herein, we discuss further details on the concepts of “drug-likeness”, “lead-likeness” and “NP-likeness”. The discussion will first focus on NPs as drugs, then a discussion of previous studies in which the complexities of the scaffolds and chemical space of naturally occurring compounds have been compared with synthetic, semisynthetic compounds and the Food and Drug Administration-approved drugs. This is followed by guiding principles for designing “drug-like” natural product libraries for lead compound discovery purposes. In addition, we present a tool for measuring “NP-likeness” of compounds and a brief presentation of machine-learning approaches. A binary quantitative structure–activity relationship for classifying drugs from nondrugs and natural compounds from nonnatural ones is also described. While the studies add to the plethora of recently published works on the “drug-likeness” of NPs, it no doubt increases our understanding of the physicochemical properties that make NPs fall within the ranges associated with “drug-like” molecules.

Keywords: cheminformatics; drugs; drug-likeness; drug discovery; natural products


  • [1]

    Abegaz BM, Kinfe H. Secondary metabolites, their structural diversity, bioactivity, and ecological functions: an overview. Phys Sci Rev. 2018. DOI: .CrossrefGoogle Scholar

  • [2]

    Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.PubMedCrossrefGoogle Scholar

  • [3]

    Dobson CM. Chemical space and biology. Nature. 2004;432:824–8.PubMedCrossrefGoogle Scholar

  • [4]

    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.CrossrefGoogle Scholar

  • [5]

    Oprea TI, Davis AM, Teague SJ, Leeson PD. Is there a difference between leads and drugs? a historical perspective. J Chem Inf Comput Sci. 2001;41:1308–15.CrossrefGoogle Scholar

  • [6]

    Hann MM, Oprea T. Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol. 2004;8:255–63.CrossrefPubMedGoogle Scholar

  • [7]

    Feher M, Schmidt JM. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci. 2003;43:218–27.PubMedCrossrefGoogle Scholar

  • [8]

    Saldívar-González FI, Pilón-Jiménez BA, Medina-Franco JL. Chemical space of naturally occurring compounds. Phys Sci Rev. 2018. DOI: .CrossrefGoogle Scholar

  • [9]

    Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–29.PubMedCrossrefGoogle Scholar

  • [10]

    Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8:531–41.PubMedCrossrefGoogle Scholar

  • [11]

    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93:2325–7.PubMedCrossrefGoogle Scholar

  • [12]

    Walsh CT, Fischbach MA. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc. 2010;132:2469–93.PubMedCrossrefGoogle Scholar

  • [13]

    Stratton CF, Newman DJ, Tan DS. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg Med Chem Lett. 2015;25:4802–7.CrossrefPubMedGoogle Scholar

  • [14]

    Li JWH, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science. 2009;325:161–5.CrossrefGoogle Scholar

  • [15]

    Pan L, Chai HB, Kinghorn AD. Discovery of new anticancer agents from higher plants. Front Biosci (Schol Ed). 2013;4:142–56.Google Scholar

  • [16]

    Harvey AL. Natural products in drug discovery. Drug Discov Today. 2008;13:894–901.CrossrefPubMedGoogle Scholar

  • [17]

    Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4:206–20.PubMedCrossrefGoogle Scholar

  • [18]

    Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. 2017;114:5601–6.CrossrefGoogle Scholar

  • [19]

    Skinnider MA, Magarvey NA. Statistical reanalysis of natural products reveals increasing chemical diversity. Proc Natl Acad Sci USA. 2017;114:E6271–2.CrossrefGoogle Scholar

  • [20]

    Grabowski K, Schneider G. Properties and architecture of drugs and natural products revisited. Curr Chem Biol. 2007;1:115–27.Google Scholar

  • [21]

    Quinn RJ, Carroll AR, Pham NB, Baron P, Palframan ME, Suraweera L, et al. Developing a drug-like natural product library. Nat Prod. 2008;71:464–8.CrossrefGoogle Scholar

  • [22]

    Lee M-L, Schneider G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J Comb Chem. 2001;3:284–9.CrossrefPubMedGoogle Scholar

  • [23]

    Hert J, Irwin JJ, Laggner C, Keiser MJ, Shoichet BK. Quantifying biogenic bias in screening libraries. Nat Chem Biol. 2009;5:479–83..CrossrefPubMedGoogle Scholar

  • [24]

    Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ. Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod. 2012;75:72−81.CrossrefPubMedGoogle Scholar

  • [25]

    Ertl P, Roggo S, Schuffenhauer A. Natural product-likeness score and its application for prioritization of compound libraries. J Chem Inf Model. 2008;48:68–74.CrossrefPubMedGoogle Scholar

  • [26]

    Ertl P, Schuffenhauer A. Cheminformatics analysis of natural products: lessons from nature inspiring the design of new drugs. Prog Drug Res. 2008;66:219–35.Google Scholar

  • [27]

    Larsson J, Gottfries J, Muresan S, Backlund A. ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod. 2007;70:789–94.PubMedCrossrefGoogle Scholar

  • [28]

    Oprea TI, Gottfries J. Chemography: the art of navigating in chemical space. J Comb Chem. 2001;3:157–66.CrossrefPubMedGoogle Scholar

  • [29]

    Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. PCA. In: Eriksson L, Byrne T, Johansson E, Trygg J, Vikstrom C, editor(s). Multi- and megavariate data analysis. Umeå: Umetrics Academy, 2001:43–69.Google Scholar

  • [30]

    Gu J, Gui Y, Chen L, Yuan G, Lu H-Z, Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One. 2013;8:e62839.CrossrefGoogle Scholar

  • [31]

    Rosén J, Gottfries J, Muresan S, Backlund A, Oprea TI. Novel chemical space exploration via natural products. J Med Chem. 2009;52:1953–62.CrossrefPubMedGoogle Scholar

  • [32]

    Gu J, Chen L, Yuan G, Xu X. A drug-target network-based approach to evaluate the efficacy of medicinal plants for type II diabetes mellitus. Evid Based Complement Alternat Med. 2013;2013:203614.PubMedGoogle Scholar

  • [33]

    Lachance H, Wetzel S, Kumar K, Waldmann H. Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem. 2012;55:5989–6001.CrossrefPubMedGoogle Scholar

  • [34]

    López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL. Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today. 2012;17:718–26.PubMedCrossrefGoogle Scholar

  • [35]

    Pascolutti M, Quinn RJ. Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov Today. 2014;19:215–21.CrossrefPubMedGoogle Scholar

  • [36]

    Reaxys, version 1.7.8. Elsevier, 2012. RRN 969209. Accessed: 9 Jan 2014.Google Scholar

  • [37]

    Shen JH, Xu XY, Cheng F, Liu H, Luo XM, Shen J, et al. Virtual screening on natural products for discovering active compounds and target information. Curr Med Chem. 2003;10:2327–42.CrossrefPubMedGoogle Scholar

  • [38]

    He M, Yan XJ, Zhou JJ, Xie GR. Traditional Chinese medicine database and application on the Web. J Chem Inf Comput Sci. 2001;41:273–7.PubMedCrossrefGoogle Scholar

  • [39]

    Qiao XB, Hou TJ, Zhang W, Guo SL, Xu XJ. A 3D structure database of components from Chinese traditional medicinal herbs. J Chem Inf Comput Sci. 2002;42:481–9.PubMedCrossrefGoogle Scholar

  • [40]

    Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for “Omics” research on drugs. Nucleic Acids Res. 2011;39:D1035–41.PubMedCrossrefGoogle Scholar

  • [41]

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein databank. Nucleic Acids Res. 2000;28:235–42.CrossrefGoogle Scholar

  • [42]

    Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. Kegg for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.CrossrefPubMedGoogle Scholar

  • [43]

    Zuegg J, Cooper MA. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. Curr Top Med Chem. 2012;12:1500–13.CrossrefPubMedGoogle Scholar

  • [44]

    Shi BX, Chen FR, Sun X. Structure-based modelling, scoring, screening, and in vitro kinase assay of anesthetic pkc inhibitors against a natural medicine library. SAR QSAR Environ Res. 2017;28:151–63.CrossrefPubMedGoogle Scholar

  • [45]

    Sánchez-Rodríguez A, Pérez-Castillo Y, Schürer SC, Nicolotti O, Mangiatordi GF, Borges F, et al. From flamingo dance to (desirable) drug discovery: a nature-inspired approach. Drug Discov Today. 2017;22:1489–502.PubMedCrossrefGoogle Scholar

  • [46]

    Ventosa-Andrés P, La-Venia A, Ripoll CA, Hradilová L, Krchňák V. Synthesis of nature-inspired medium-sized fused heterocycles from amino acids. Chemistry. 2015;21:13112–19.CrossrefPubMedGoogle Scholar

  • [47]

    Koulouridi E, Valli M, Ntie-Kang F, Bolzani VS. A primer on natural product-based virtual screening. Phys Sci Rev. 2018. DOI: .CrossrefGoogle Scholar

  • [48]

    Chen Y, de Bruyn Kops C, Kirchmair J. Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model. 2017;57:2099–111.PubMedCrossrefGoogle Scholar

  • [49]

    Chen Y, Garcia de Lomana M, Friedrich N-O, Kirchmair J. Characterization of the chemical space of known and readily obtainable natural products. J Chem Inf Model. 2018;58:1518–32.PubMedCrossrefGoogle Scholar

  • [50]

    Darvas F, Keseru G, Papp A, Dormán G, Urge L, Krajcsi P. In silico and ex silico ADME approaches for drug discovery. Top Med Chem. 2002;2:1287–304.−.CrossrefGoogle Scholar

  • [51]

    Hodgson J. ADMET – turning chemicals into drugs. Nat Biotechnol. 2001;19:722−6.PubMedCrossrefGoogle Scholar

  • [52]

    Navia MA, Chaturvedi PR. Design principles for orally bioavailable drugs. Drug Discov Today. 1996;1:179−89.CrossrefGoogle Scholar

  • [53]

    Lombardo F, Gifford E, Shalaeva MY. In silico ADME prediction: data, models, facts and myths. Mini Rev Med Chem. 2003;3:861−75.PubMedCrossrefGoogle Scholar

  • [54]

    Gleeson MP, Hersey A, Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem. 2011;11:358−381.PubMedCrossrefGoogle Scholar

  • [55]

    DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22:151−85.CrossrefGoogle Scholar

  • [56]

    OCHEM - A platform for the creation of in silico ADME / Tox prediction models. http://www.eadmet.com/en/ochem.php. Accessed: 16 Feb 2019.

  • [57]

    Meteor software, version 13.0.0. Lhasa Ltd, Leeds, UK, 2010.Google Scholar

  • [58]

    QikProp software, version 3.4. New York, NY: Schrödinger, LLC, 2011.Google Scholar

  • [59]

    Cruciani G, Crivori P, Carrupt PA, Testa B. Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. J Mol Struc-Theochem. 2000;503:17−30.CrossrefGoogle Scholar

  • [60]

    Tetko IV, Bruneau P, Mewes H-W, Rohrer DC, Poda GI. Can we estimate the accuracy of ADMET predictions? Drug Discov Today. 2006;11:700−7.CrossrefGoogle Scholar

  • [61]

    Hansch C, Leo A, Mekapatia SB, Kurup A. QSAR and ADME. Bioorg Med Chem. 2004;12:3391−400.PubMedCrossrefGoogle Scholar

  • [62]

    Greene N, Judson PN, Langowski JJ. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res. 1999;10:299−314.PubMedCrossrefGoogle Scholar

  • [63]

    Button WG, Judson PN, Long A, Vessey JD. Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. J Chem Inf Comput Sci. 2003;43:1371−7.PubMedCrossrefGoogle Scholar

  • [64]

    Cronin MTD. Computer-assisted prediction of drug toxicity and metabolism. In: Hillisch A, Hilgenfeld R, editors. Modern methods of drug Discovery. Basel: Birkhäuser, 2003:259−278.Google Scholar

  • [65]

    Hou T, Wang J. Structure-ADME relationship: still a long way to go? Expert Opin Drug Metab Toxicol. 2008;4:759−70.CrossrefGoogle Scholar

  • [66]

    Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–72.CrossrefPubMedGoogle Scholar

  • [67]

    Jayaseelan KV, Steinbeck C, Moreno P, Truszkowski A, Ertl P. Natural product-likeness score revisited: an open-source, open-data implementation. BMC Bioinform. 2012;13:106CrossrefGoogle Scholar

  • [68]

    Available at: http://www.myexperiment.org/packs/183.html. Accessed: 16 Feb 2019.

  • [69]

    Available at: http://sourceforge.net/projects/nplikeness/. Accessed: 16 Feb 2019.

  • [70]

    Sadowski J, Kubinyi H. A scoring scheme for discriminating between drugs and nondrugs. J Med Chem. 1998;41:3325–9.CrossrefPubMedGoogle Scholar

  • [71]

    Ajay A, Walters PW, Murcko MA. Can we learn to distinguish between “drug-like” and “non drug-like” molecules? J Med Chem. 1998;41:3314–24.CrossrefGoogle Scholar

  • [72]

    Frimurer TM, Bywater R, Naerum L, Lauritsen LN, Brunak S. Improving the odds in discriminating “drug-like” from “non drug-like” compounds. J Chem Inf Comput Sci. 2000;40:1315–24.CrossrefGoogle Scholar

  • [73]

    Wagener M, van Geerestein VJ. Potential drugs and nondrugs: prediction and identification of important structural features. J Chem Inf Comput Sci. 2000;40:280–92.CrossrefPubMedGoogle Scholar

  • [74]

    Stahura FL, Godden JW, Xue L, Bajorath J. Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J Chem Inf Comput Sci. 2000;40:1245–52.CrossrefPubMedGoogle Scholar

  • [75]

    Athar M, Sona AN, Bkono BD, Ntie-Kang F. Fundamental physical and chemical concepts behind “drug-kiness” and “natural product-likeness. Phys Sci Rev 2019..CrossrefGoogle Scholar

  • [76]

    Lipinski CA. Chris Lipinski discusses life and chemistry after the rule of five. Drug Discov Today. 2003;8:12–16.CrossrefGoogle Scholar

  • [77]

    Chen Y, Stork C, Hirte S, Kirchmair J. NP-Scout: machine learning approach for the quantification and visualization of the natural product-likeness of small molecules. Biomolecules. 2019;9:43.CrossrefGoogle Scholar

About the article

Published Online: 2019-09-04

Citation Information: Physical Sciences Reviews, 20180169, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0169.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in