Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pteridines

Official Journal of the International Society of Pteridinology

Editor-in-Chief: Fuchs, Dietmar

4 Issues per year


IMPACT FACTOR 2016: 0.621

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.184

Online
ISSN
2195-4720
See all formats and pricing
More options …
Volume 24, Issue 1 (Jun 2013)

Issues

Immune activation and inflammation in patients with cardiovascular disease are associated with elevated phenylalanine-to-tyrosine ratios

Harald Mangge
  • Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang J. Schnedl / Sebastian Schröcksnadel / Simon Geisler / Christian Murr / Dietmar Fuchs
Published Online: 2013-04-26 | DOI: https://doi.org/10.1515/pterid-2013-0002

Abstract

Higher serum neopterin concentrations and kynurenine-to-tryptophan (Kyn/Trp) ratios are associated with increased mortality in patients with coronary artery disease (CAD). Preferentially, Th1-type cytokine interferon-γ stimulates tryptophan breakdown and neopterin production by GTP cyclohydrolase I (GCH-I) in parallel in monocyte-derived macrophages and dendritic cells. In other cells, activation of GCH-I leads to the formation of 5,6,7,8-tetrahydrobiopterin (BH4), the necessary cofactor of amino acid hydroxylases such as phenylalanine 4-hydroxylase (PAH) and nitric oxide synthases. In 31 CAD patients (70.3±9.9 years; 21 males, 10 females), we determined serum concentrations of phenylalanine, tyrosine, and Kyn/Trp by HPLC, neopterin by ELISA, and nitrite by the colorimetric Griess assay. The phenylalanine-to-tyrosine ratio (Phe/Tyr) served as an estimate of PAH enzyme activity. Elevated Phe/Tyr concentrations were detected in a subgroup of CAD patients and correlated with Kyn/Trp (r=0.396, p<0.05) and neopterin (r=0.354, p<0.05) and inversely with nitrite (r=–0.371, p<0.05) concentrations. Higher Phe/Tyr in patients is associated with immune activation and indicates subnormal PAH activity that might be involved in the precipitation of neuropsychiatric symptoms in CAD patients.

Keywords: coronary artery disease; neopterin; phenylalanine; phenylalanine hydroxylase; tetrahydrobiopterin

References

  • 1.

    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317–25.Web of ScienceGoogle Scholar

  • 2.

    Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, et al. Immune response-associated production of neopterin – release from macrophages primarily under control of interferon-γ. J Exp Med 1984;160:310–6.Google Scholar

  • 3.

    Wirleitner B, Reider D, Ebner S, Böck G, Widner B, Jaeger M, et al. Monocyte-derived dendritic cells release neopterin. J Leukocyte Biol 2002;2:1148–53.Google Scholar

  • 4.

    Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Yim JJ, et al. Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1 and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-γ, 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J Biol Chem 1990;265:3189–92.Google Scholar

  • 5.

    Schroecksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 2006;364:82–90.Google Scholar

  • 6.

    Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A, et al. Immune activation and degradation of tryptophan in coronary heart disease. Eur J Clin Invest 2003;33:550–4.PubMedCrossrefGoogle Scholar

  • 7.

    Niinisalo P, Raitala A, Pertovaara M, Oja SS, Lehtimäki T, Kähönen M, et al. Indoleamine 2,3-dioxygenase activity associates with cardiovascular risk factors: the Health 2000 study. Scand J Clin Lab Invest 2008;68:767–70.Web of ScienceGoogle Scholar

  • 8.

    Fuchs D, Avanzas P, Arroyo-Espliguero R, Jenny M, Consuegra Sanchez L, Kaski JC. The role of neopterin in atherogenesis and cardiovascular risk stratification. Curr Med Chem 2009;16: 4644–53.CrossrefGoogle Scholar

  • 9.

    Grammer TB, Fuchs D, Böhm BO, Winkelmann BR, Maerz W. Neopterin as a predictor of total and cardiovascular mortality in individuals undergoing angiography (The Ludwigshafen Risk and Cardiovascular Health Study). Clin Chem 2009;55:115–46.Google Scholar

  • 10.

    Pedersen ER, Midttun Ø, Ueland PM, Schartum-Hansen H, Seifert R, Igland J, et al. Systemic markers of interferon-γ-mediated immune activation and long-term prognosis in patients with stable coronary artery disease. Arterioscler Thromb Vasc Biol 2011;31:698–704.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 11.

    Neurauter G, Schröcksnadel K, Scholl-Bürgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, et al. Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 2008;9:622–7.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 12.

    Ploder M, Neurauter G, Spittler A, Schroecksnadel K, Roth E, Fuchs D. Serum phenylalanine in patients post trauma and with sepsis correlates to neopterin concentrations. Amino Acids 2008;35:303–7.Web of ScienceGoogle Scholar

  • 13.

    Zangerle R, Kurz K, Neurauter G, Kitchen M, Sarcletti M, Fuchs D. Increased blood phenylalanine to tyrosine ratio in HIV-1 infection and correction following effective antiretroviral therapy. Brain Behav Immun 2010;24:403–8.Web of SciencePubMedGoogle Scholar

  • 14.

    Capuron L, Schroecksnadel S, Féart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 2011;70:175–82.Web of ScienceGoogle Scholar

  • 15.

    Gotto AM Jr, Moon JE. Management of cardiovascular risk: the importance of meeting lipid targets. Am J Cardiol 2012;110(Suppl 1):3A–14A.Google Scholar

  • 16.

    Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 1997;43:2424–6.Google Scholar

  • 17.

    Neurauter G, Grahmann AV, Klieber M, Zeimet A, Ledochowski M, Sperner-Unterweger B, et al. Serum phenylalanine concentrations in patients with ovarian carcinoma correlate with concentrations of immune activation markers and of isoprostane-8. Cancer Lett 2008;272:141–7.Web of ScienceGoogle Scholar

  • 18.

    Rosenblatt D, Scriver CR. Heterogeneity in genetic control of phenylalanine metabolism in man. Nature 1968;218:677–8.Google Scholar

  • 19.

    Anderson DN, Wilkinson AM, Abou-Saleh MT, Blair JA. Recovery from depression after electroconvulsive therapy is accompanied by evidence of increased tetrahydrobiopterin-dependent hydroxylation. Acta Psychiatr Scand 1994;90:10–3.Google Scholar

  • 20.

    Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Adaptation of the Griess reaction for detection of nitrite in human plasma. Free Radic Res 2004;38:1235–40.Google Scholar

  • 21.

    Shih VE. Amino acid analysis. In: Blau N, Duran M, Blaskovic ME, Gibson KM, editors. Physician’s guide to the laboratory diagnosis of metabolic diseases, 2nd ed. Berlin: Springer, 2003:11–26.Google Scholar

  • 22.

    Scholl-Bürgi S, Schroecksnadel S, Jenny M, Karall D, Fuchs D. Chronic immune stimulation may cause moderate impairment of phenylalanine 4-hydroxylase. Pteridines 2011;22:120–5.Google Scholar

  • 23.

    Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2012;37:137–62.Web of ScienceGoogle Scholar

  • 24.

    Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL, et al. Tyrosine metabolism during interferon-α administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun 2012;pii:S0889-1591(12)00472-2.Web of ScienceGoogle Scholar

  • 25.

    Van Gool AR, Fekkes D, Kruit WH, Mulder PG, Ten Hagen TL, Bannink M, et al. Serum amino acids, biopterin and neopterin during long-term immunotherapy with interferon-α in high-risk melanoma patients. Psychiatry Res 2003;119:125–32.Google Scholar

  • 26.

    Zoller H, Schloegl A, Schroecksnadel S, Vogel W, Fuchs D. Influence of interferon-α therapy on phenylalanine hydroxylase activity in patients with HCV infection. J Interferon Cytokine Res 2012;32:216–20.CrossrefGoogle Scholar

  • 27.

    Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metabol 2002;3: 175–87.CrossrefGoogle Scholar

  • 28.

    Kaufman S. Hepatic phenylalanine hydroxylase and PKU. UCLA Forum Med Sci 1975;18:445–58.PubMedGoogle Scholar

  • 29.

    Fitzpatrick PF. The tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem 1999;68:355–81.Google Scholar

  • 30.

    Watschinger K, Keller MA, Golderer G, Hermann M, Maglione M, Sarg B, et al. Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes. Proc Natl Acad Sci USA 2010;107:13672–7.Web of ScienceGoogle Scholar

  • 31.

    Crabtree MJ, Channon KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 2011;25:81–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 32.

    Cunnington C, Van Assche T, Shirodaria C, Kylintireas I, Lindsay AC, Lee JM, et al. Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation 2012;125:1356–66.Web of ScienceGoogle Scholar

  • 33.

    Biondi R, Ambrosio G, De Pascali F, Tritto I, Capodicasa E, Druhan LJ, et al. HPLC analysis of tetrahydrobiopterin and its pteridine derivatives using sequential electrochemical and fluorimetric detection: application to tetrahydrobiopterin autoxidation and chemical oxidation. Arch Biochem Biophys 2012;520:7–16.Web of ScienceGoogle Scholar

  • 34.

    Kwon NS, Nathan CF, Stuehr DJ. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem 1989;264:20496–501.Google Scholar

About the article

Corresponding author: Dietmar Fuchs, Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80, 6020 Innsbruck, Austria, Fax: +43-512-9003-73330


Received: 2013-02-07

Accepted: 2013-03-22

Published Online: 2013-04-26

Published in Print: 2013-06-01


Citation Information: Pteridines, ISSN (Online) 2195-4720, ISSN (Print) 0933-4807, DOI: https://doi.org/10.1515/pterid-2013-0002.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Diego Marcos-Pérez, María Sánchez-Flores, Ana Maseda, Laura Lorenzo-López, José C. Millán-Calenti, Barbara Strasser, Johanna M. Gostner, Dietmar Fuchs, Eduardo Pásaro, Vanessa Valdiglesias, and Blanca Laffon
Journal of the American Medical Directors Association, 2017
[2]
Marisa Möller, Leoné Malan, Martin Magnusson, Carina M. C. Mels, and Nico T. Malan
Psychophysiology, 2017, Volume 54, Number 5, Page 696
[3]
Lenka Kujovska Krcmova, Barbora Cervinkova, Dagmar Solichova, Lubos Sobotka, Lenka Hansmanova, Bohuslav Melichar, and Petr Solich
Bioanalysis, 2015, Volume 7, Number 21, Page 2751

Comments (0)

Please log in or register to comment.
Log in