Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pteridines

Official Journal of the International Society of Pteridinology

Editor-in-Chief: Fuchs, Dietmar


IMPACT FACTOR 2018: 0.531

CiteScore 2018: 0.67

SCImago Journal Rank (SJR) 2018: 0.195
Source Normalized Impact per Paper (SNIP) 2018: 0.318

ICV 2018: 145.86

Open Access
Online
ISSN
2195-4720
See all formats and pricing
More options …
Volume 29, Issue 1

Issues

Periodontal, metabolic, and cardiovascular disease: Exploring the role of inflammation and mental health

Hina Makkar
  • Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark A. Reynolds
  • Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abhishek Wadhawan
  • Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
  • Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aline Dagdag
  • Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anwar T. Merchant
  • Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teodor T. Postolache
  • Corresponding author
  • Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
  • Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network, Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, USA
  • Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network, VA Capitol Health Care Network, Baltimore, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-13 | DOI: https://doi.org/10.1515/pteridines-2018-0013

Abstract

Previous evidence connects periodontal disease, a modifiable condition affecting a majority of Americans, with metabolic and cardiovascular morbidity and mortality. This review focuses on the likely mediation of these associations by immune activation and their potential interactions with mental illness. Future longitudinal, and ideally interventional studies, should focus on reciprocal interactions and cascading effects, as well as points for effective preventative and therapeutic interventions across diagnostic domains to reduce morbidity, mortality and improve quality of life.

Keywords: Periodontitis; metabolic syndrome; cardiovascular disease; mental illness; inflammation

References

  • 1. Page R.C., Schroeder H.E., Periodontitis in man and other animals. A comparative review. S. Karger. Basel, Switzerland; 1982.Google Scholar

  • 2. Lang N.P., Lindhe J, Clinical Periodontology and Implant Dentistry, 2 Volume Set. 6th edition. Wiley-Blackwell. Chicester, United Kingdom; 2015.Google Scholar

  • 3. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999;4(1):1-6.CrossrefGoogle Scholar

  • 4. Mariotti A. Dental plaque-induced gingival diseases. Ann Periodontol. 1999;4(1):7-19.CrossrefPubMedGoogle Scholar

  • 5. Oliver RC, Brown LJ, Loe H. Periodontal diseases in the United States population. J Periodontol. 1998;69(2):269-78.Google Scholar

  • 6. Socransky S, Manganiello A, Propas D, Oram V, Van Houte J. Bacteriological studies of developing supragingival dental plaque. J Periodontal Res. 1977;12(2):90-106.CrossrefPubMedGoogle Scholar

  • 7. Guggenheim B, Giertsen E, Schupbach P, Shapiro S. Validation of an in vitro biofilm model of supragingival plaque. J Dent Res. 2001;80(1):363-70.Google Scholar

  • 8. Ximenez‐Fyvie LA, Haffajee AD, Socransky SS. Microbial composition of supra‐and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol. 2000;27(10):722-32.Google Scholar

  • 9. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, et al. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001;183(12):3770-83.Google Scholar

  • 10. Tanner A, Maiden M, Macuch P, Murray L, Kent Jr R. Microbiota of health, gingivitis, and initial periodontitis. J Clin Periodontol. 1998;25(2):85-98.Google Scholar

  • 11. Moore W. Microbiology of periodontal disease. J Periodontal Res. 1987;22(5):335-41.CrossrefGoogle Scholar

  • 12. Kingman A, Albandar JM. Methodological aspects of epidemiological studies of periodontal diseases. Periodontol 2000. 2002;29(1):11-30.Google Scholar

  • 13. Dye BA. Global periodontal disease epidemiology. Periodontol 2000. 2012;58(1):10-25.Google Scholar

  • 14. Ainamo J, Barmes D, Beagrie G, Cutress T, Martin J, Sardo- Infirri J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J. 1982;32(3):281-91.Google Scholar

  • 15. Eke PI, Page RC, Wei L, Thornton-Evans G, Genco RJ. Update of the case definitions for population-based surveillance of periodontitis. J Periodontol. 2012;83(12):1449-54.Google Scholar

  • 16. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914-20.Google Scholar

  • 17. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86(5):611-22.Google Scholar

  • 18. National Center for Health Statistics. Healthy People 2010. 2015 [updated November 6, 2015]. Available from: https://www.cdc.gov/nchs/healthy_people/hp2010.htm.Google Scholar

  • 19. Eke PI, Genco RJ. CDC Periodontal Disease Surveillance Project: background, objectives, and progress report. J Periodontol. 2007;78(7S):1366-71.Google Scholar

  • 20. Reynolds MA. Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol 2000. 2014;64(1):7-19.Google Scholar

  • 21. Armitage GC, Wu Y, Wang HY, Sorrell J, di Giovine FS, Duff GW. Low prevalence of a periodontitis-associated interleukin-1 composite genotype in individuals of Chinese heritage. J Periodontol. 2000;71(2):164-71.Google Scholar

  • 22. Michalowicz BS, Diehl SR, Gunsolley JC, Sparks BS, Brooks CN, Koertge TE, et al. Evidence of a substantial genetic basis for risk of adult periodontitis. J Periodontol. 2000;71(11):1699-707.Google Scholar

  • 23. Grossi SG, Zambon JJ, Ho AW, Koch G, Dunford RG, Machtei EE, et al. Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol. 1994;65(3):260-7.CrossrefGoogle Scholar

  • 24. Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol 2000. 2013;62(1):59-94.Google Scholar

  • 25. Dye BA, Vargas CM. The use of a modified CPITN approach to estimate periodontal treatment needs among adults aged 20-79 years by socio-demographic characteristics in the United States, 1988-94. Community Dent Health. 2002;19(4):215-23.Google Scholar

  • 26. Lockhart PB, Bolger AF, Papapanou PN, Osinbowale O, Trevisan M, Levison ME, et al. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association. Circulation. 2012;125(20):2520-44.Google Scholar

  • 27. Shiau HJ, Reynolds MA. Sex differences in destructive periodontal disease: a systematic review. J Periodontol. 2010;81(10):1379-89.Google Scholar

  • 28. Merchant AT, Pitiphat W, Rimm EB, Joshipura K. Increased physical activity decreases periodontitis risk in men. Eur J Epidemiol. 2003;18(9):891-8.Google Scholar

  • 29. Genco RJ. Current view of risk factors for periodontal diseases. J Periodontol. 1996;67(10 Suppl):1041-9.Google Scholar

  • 30. Burt B; Research, Science and Therapy Committee of the American Academy of Periodontology. Position paper: epidemiology of periodontal diseases. J Periodontol. 1996;67(9):935-45.Google Scholar

  • 31. Grossi SG, Genco RJ, Machtei EE, Ho AW, Koch G, Dunford R, et al. Assessment of risk for periodontal disease. II. Risk indicators for alveolar bone loss. J Periodontol. 1995;66(1):23-9.Google Scholar

  • 32. Meusel DR, Ramacciato JC, Motta RH, Junior RBB, Florio FM. Impact of the severity of chronic periodontal disease on quality of life. J Oral Sci. 2015;57(2):87-94.Google Scholar

  • 33. Hyde S, Dupuis V, Mariri BP, Dartevelle S. Prevention of tooth loss and dental pain for reducing the global burden of oral diseases. Int Dent J. 2017;67 Suppl 2:19-25.Google Scholar

  • 34. Thornton-Evans G, Eke P, Wei L, Palmer A, Moeti R, Hutchins S, et al. Periodontitis among adults aged >/=30 years - United States, 2009-2010. MMWR Suppl. 2013;62(3):129-35.Google Scholar

  • 35. Abnet CC, Qiao Y-L, Dawsey SM, Dong Z-W, Taylor PR, Mark SD. Tooth loss is associated with increased risk of total death and death from upper gastrointestinal cancer, heart disease, and stroke in a Chinese population-based cohort. Int J Epidemiol. 2005;34(2):467-74.CrossrefGoogle Scholar

  • 36. Aida J, Kondo K, Yamamoto T, Hirai H, Nakade M, Osaka K, et al. Oral health and cancer, cardiovascular, and respiratory mortality of Japanese. J Dent Res. 2011;90(9):1129-35.Google Scholar

  • 37. Linden GJ, Linden K, Yarnell J, Evans A, Kee F, Patterson CC. All-cause mortality and periodontitis in 60-70-year-old men: a prospective cohort study. J Clin Periodontol. 2012;39(10):940-6.Google Scholar

  • 38. Xu F, Lu B. Prospective association of periodontal disease with cardiovascular and all-cause mortality: NHANES III follow-up study. Atherosclerosis. 2011;218(2):536-42.Google Scholar

  • 39. Chen LP, Chiang CK, Peng YS, Hsu SP, Lin CY, Lai CF, et al. Relationship between periodontal disease and mortality in patients treated with maintenance hemodialysis. Am J Kidney Dis. 2011;57(2):276-82.Google Scholar

  • 40. Dorn JM, Genco RJ, Grossi SG, Falkner KL, Hovey KM, Iacoviello L, et al. Periodontal disease and recurrent cardiovascular events in survivors of myocardial infarction (MI): the Western New York Acute MI Study. J Periodontol. 2010;81(4):502-11.CrossrefGoogle Scholar

  • 41. Saremi A, Nelson RG, Tulloch-Reid M, Hanson RL, Sievers ML, Taylor GW, et al. Periodontal disease and mortality in type 2 diabetes. Diabetes Care. 2005;28(1):27-32.CrossrefPubMedGoogle Scholar

  • 42. Abnet CC, Qiao YL, Dawsey SM, Dong ZW, Taylor PR, Mark SD. Tooth loss is associated with increased risk of total death and death from upper gastrointestinal cancer, heart disease, and stroke in a Chinese population-based cohort. Int J Epidemiol. 2005;34(2):467-74.CrossrefGoogle Scholar

  • 43. Garcia RI, Krall EA, Vokonas PS. Periodontal disease and mortality from all causes in the VA Dental Longitudinal Study. Ann Periodontol. 1998;3(1):339-49.CrossrefGoogle Scholar

  • 44. Schwahn C, Polzer I, Haring R, Dorr M, Wallaschofski H, Kocher T, et al. Missing, unreplaced teeth and risk of all-cause and cardiovascular mortality. Int J Cardiol. 2013;167(4):1430-7.Google Scholar

  • 45. Heitmann BL, Gamborg M. Remaining teeth, cardiovascular morbidity and death among adult Danes. Prev Med. 2008;47(2):156-60.CrossrefPubMedGoogle Scholar

  • 46. Holmlund A, Holm G, Lind L. Number of teeth as a predictor of cardiovascular mortality in a cohort of 7,674 subjects followed for 12 years. J Periodontol. 2010;81(6):870-6.Google Scholar

  • 47. Aida J, Kondo K, Yamamoto T, Hirai H, Nakade M, Osaka K, et al. Oral health and cancer, cardiovascular, and respiratory mortality of Japanese. J Dent Res. 2011;90(9):1129-35.Google Scholar

  • 48. Ansai T, Takata Y, Yoshida A, Soh I, Awano S, Hamasaki T, et al. Association between tooth loss and orodigestive cancer mortality in an 80-year-old community-dwelling Japanese population: a 12-year prospective study. BMC Public Health. 2013;13:814.CrossrefGoogle Scholar

  • 49. Ritchie CS, Joshipura K, Hung HC, Douglass CW. Nutrition as a mediator in the relation between oral and systemic disease: associations between specific measures of adult oral health and nutrition outcomes. Crit Rev Oral Biol Med. 2002;13(3):291-300.Google Scholar

  • 50. World Health Organization. Global status report on noncommunicable diseases 2014. 2014 [updated 2014]. Available from: http://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf;jsessionid=EE939D743C373AEC938F528B292B7684?sequence=1.Google Scholar

  • 51. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67-e492.Google Scholar

  • 52. Ouma GO, Jonas RA, Usman MH, Mohler ER, 3rd. Targets and delivery methods for therapeutic angiogenesis in peripheral artery disease. Vasc Med. 2012;17(3):174-92.CrossrefGoogle Scholar

  • 53. Kullo IJ, Rooke TW. CLINICAL PRACTICE. Peripheral Artery Disease. N Engl J Med. 2016;374(9):861-71.Google Scholar

  • 54. Howell MA, Colgan MP, Seeger RW, Ramsey DE, Sumner DS. Relationship of severity of lower limb peripheral vascular disease to mortality and morbidity: a six-year follow-up study. J Vasc Surg. 1989;9(5):691-6; discussion 6-7.CrossrefGoogle Scholar

  • 55. McKenna M, Wolfson S, Kuller L. The ratio of ankle and arm arterial pressure as an independent predictor of mortality. Atherosclerosis. 1991;87(2-3):119-28.Google Scholar

  • 56. Leng GC, Fowkes FG, Lee AJ, Dunbar J, Housley E, Ruckley CV. Use of ankle brachial pressure index to predict cardiovascular events and death: a cohort study. BMJ. 1996;313(7070):1440-4.Google Scholar

  • 57. Leng GC, Lee AJ, Fowkes FG, Whiteman M, Dunbar J, Housley E, et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. Int J Epidemiol. 1996;25(6):1172-81.PubMedCrossrefGoogle Scholar

  • 58. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317-24.Google Scholar

  • 59. Alberti K, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640-5.Google Scholar

  • 60. Third Report of the National Cholesterol Education Program (NCEP). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-421.Google Scholar

  • 61. Grundy SM, Brewer HB, Jr., Cleeman JI, Smith SC, Jr., Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433-8.Google Scholar

  • 62. Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104(22):2746-53.Google Scholar

  • 63. Crespo PS, Prieto Perera JA, Lodeiro FA, Azuara LA. Metabolic syndrome in childhood. Public Health Nutr. 2007;10(10a):1121-5.Google Scholar

  • 64. Huang TT, Ball GD, Franks PW. Metabolic syndrome in youth: current issues and challenges. Appl Physiol Nutr Metab. 2007;32(1):13-22.CrossrefGoogle Scholar

  • 65. Pergher RN, Melo ME, Halpern A, Mancini MC. Is a diagnosis of metabolic syndrome applicable to children? J Pediatr (Rio J). 2010;86(2):101-8.Google Scholar

  • 66. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988-1994. Arch Pediatr Adolesc Med. 2003;157(8):821-7.Google Scholar

  • 67. Cruz ML, Weigensberg MJ, Huang TT, Ball G, Shaibi GQ, Goran MI. The metabolic syndrome in overweight Hispanic youth and the role of insulin sensitivity. J Clin Endocrinol Metab. 2004;89(1):108-13.Google Scholar

  • 68. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362-74.Google Scholar

  • 69. Association AD. Standards of medical care in diabetes--2011. Diabetes Care. 2011;34 Suppl 1:S11-61.Google Scholar

  • 70. Dabelea D, Bell RA, D’Agostino RB, Jr., Imperatore G, Johansen JM, Linder B, et al. Incidence of diabetes in youth in the United States. JAMA. 2007;297(24):2716-24.Google Scholar

  • 71. Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int J Epidemiol. 2014;43(2):476-93.Google Scholar

  • 72. World Health Organization. The Global Burden of Disease 2004 update. 2008 [updated 2008]. Available from: http:// www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf.Google Scholar

  • 73. Kauppi K, Hatonen H, Adams CE, Valimaki M. Perceptions of treatment adherence among people with mental health problems and health care professionals. J Adv Nurs. 2015;71(4):777-88.Google Scholar

  • 74. National Institute of Mental Health. Statistics. 2018 [updated January, 2018]. Available from: https://www.nimh.nih.gov/health/statistics/index.shtml.Google Scholar

  • 75. Centers for Disease Control and Prevention. National Center for Injury Prevention and Control. Web-based injury statistics query and reporting system (WISQARS) 2017 [updated July 19, 2016]. Available from: https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_age_group_2014_1050w760h.gif.Google Scholar

  • 76. Stone DM, Simon TR, Fowler KA, Kegler SR, Yuan K, Holland KM, et al. Vital Signs: Trends in State Suicide Rates - United States, 1999-2016 and Circumstances Contributing to Suicide - 27 States, 2015. MMWR Morb Mortal Wkly Rep 2018;67:617-624.Google Scholar

  • 77. Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol. 1996;1(1):821-78.Google Scholar

  • 78. Masada MP, Persson R, Kenney JS, Lee SW, Page RC, Allison AC. Measurement of interleukin‐1α and‐1β in gingival crevicular fluid: Implications for the pathogenesis of periodontal disease. J Periodontal Res. 1990;25(3):156-63.CrossrefGoogle Scholar

  • 79. Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res. 1991;26(3):230-42.PubMedCrossrefGoogle Scholar

  • 80. Manouchehr-Pour M, Spagnuolo P, Rodman H, Bissada N. Comparison of neutrophil chemotactic response in diabetic patients with mild and severe periodontal disease. J Periodontol. 1981;52(8):410-5.Google Scholar

  • 81. Fuchs D, Hausen A, Reibnegger G, Werner ER, Dierich MP, Wachter H. Neopterin as a marker for activated cell-mediated immunity: application in HIV infection. Immunol Today. 1988;9(5):150-5.PubMedCrossrefGoogle Scholar

  • 82. Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med. 1984;160(1):310-6.Google Scholar

  • 83. Wirleitner B, Reider D, Ebner S, Bock G, Widner B, Jaeger M, et al. Monocyte‐derived dendritic cells release neopterin. J Leukoc Biol. 2002;72(6):1148-53.Google Scholar

  • 84. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Tumour necrosis factor-alpha and lipopolysaccharide enhance interferon-induced tryptophan degradation and pteridine synthesis in human cells. Biol Chem Hoppe Seyler. 1989;370(9):1063-9.Google Scholar

  • 85. Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metab. 2002;3(2):175-87.CrossrefGoogle Scholar

  • 86. Nathan C. Peroxide and pteridine: a hypothesis on the regulation of macrophage antimicrobial activity by interferon gamma. Interferon. 1986;7:125-43.PubMedGoogle Scholar

  • 87. Ozmeric N, Baydar T, Bodur A, Engin AB, Uraz A, Eren K, et al. Level of neopterin, a marker of immune cell activation in gingival crevicular fluid, saliva, and urine in patients with aggressive periodontitis. J Periodontol. 2002;73(7):720-5.Google Scholar

  • 88. Vrecko K, Staedtler P, Mischak I, Maresch L, Reibnegger G. Periodontitis and concentrations of the cellular immune activation marker neopterin in saliva and urine. Clin Chim Acta. 1997;268(1-2):31-40.Google Scholar

  • 89. Pradeep A, Kumar MS, Ramachandraprasad M, Shikha C. Gingival crevicular fluid levels of neopterin in healthy subjects and in patients with different periodontal diseases. J Periodontol. 2007;78(10):1962-7.Google Scholar

  • 90. Neumann F-J, Ott I, Gawaz M, Richardt G, Holzapfel H, Jochum M, et al. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation. 1995;92(4):748-55.CrossrefPubMedGoogle Scholar

  • 91. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovascular research. 2002;53(1):31-47.Google Scholar

  • 92. Del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000;10(1):95-112.CrossrefGoogle Scholar

  • 93. Chamorro A. Role of inflammation in stroke and atherothrombosis. Cerebrovasc Dis. 2004;17(Suppl. 3):1-5.PubMedCrossrefGoogle Scholar

  • 94. Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes FGR. Inflammatory, haemostatic, and rheological markers for incident peripheral arterial disease: Edinburgh Artery Study. Eur Heart J. 2007;28(3):354-62.CrossrefGoogle Scholar

  • 95. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA. 2001;285(19):2481-5.Google Scholar

  • 96. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233-41.Google Scholar

  • 97. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol. 1995;57:791-804.CrossrefGoogle Scholar

  • 98. Libby P, Ridker PM, Hansson GK, Leducq Transatlantic Network on Atherothrombosis. Inflammation in Atherosclerosis: From Pathophysiology to Practice. J Am Coll Cardiol. 2009;54(23):2129-38.Google Scholar

  • 99. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340(2):115-26.Google Scholar

  • 100. Ludewig B, Zinkernagel RM, Hengartner H. Arterial inflammation and atherosclerosis. Trends Cardiovasc Med. 2002;12(4):154-9.Google Scholar

  • 101. Shah SH, Newby LK. C-reactive protein: a novel marker of cardiovascular risk. Cardiol Rev. 2003;11(4):169-79.CrossrefGoogle Scholar

  • 102. Blake GJ, Ridker PM. Inflammatory bio-markers and cardiovascular risk prediction. J Intern Med. 2002;252(4):283-94.Google Scholar

  • 103. Fuchs D, Avanzas P, Arroyo-Espliguero R, Jenny M, Consuegra- Sanchez L, Kaski J. The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr Med Chem. 2009;16(35):4644-53.Google Scholar

  • 104. Adachi T, Naruko T, Itoh A, Komatsu R, Abe Y, Shirai N, et al. Neopterin is associated with plaque inflammation and destabilization in human coronary atherosclerotic lesions. Heart. 2007.Google Scholar

  • 105. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327-34.Google Scholar

  • 106. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating interleukin‐6 in relation to adiposity, insulin action, and insulin secretion. Obes Res. 2001;9(7):414-7.CrossrefGoogle Scholar

  • 107. Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-α in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998;83(8):2907-10.Google Scholar

  • 108. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745-E51.Google Scholar

  • 109. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25(1):4-7.Google Scholar

  • 110. Grace C, Goldrick R. Fibrinolysis and body build: interrelationships between blood fibrinolysis, body composition and parameters of lipid and carbohydrate metabolism. J Atheroscler Res. 1968;8(4):705-19.Google Scholar

  • 111. Fearnley G, Vincent C, Chakrabarti R. Reduction of blood fibrinolytic activity in diabetes mellitus by insulin. Lancet. 1959;274(7111):1067.Google Scholar

  • 112. Ogston D, McAndrew G. Fibrinolysis in obesity. Lancet. 1964;2:1205-7.Google Scholar

  • 113. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169-80.Google Scholar

  • 114. Feinstein R, Kanety H, Papa M, Lunenfeld B, Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem. 1993;268(35):26055-8.Google Scholar

  • 115. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91.Google Scholar

  • 116. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278(46):45777-84.Google Scholar

  • 117. Hotamisligil G. Molecular mechanisms of insulin resistance and the role of the adipocyte. Int J Obes Relat Metab Disord. 2000;24(S4):S23.Google Scholar

  • 118. Hotamisligil G. The role of TNFα and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245(6):621-5.Google Scholar

  • 119. Ford ES. Body mass index, diabetes, and C-reactive protein among US adults. Diabetes care. 1999;22(12):1971-7.Google Scholar

  • 120. Pickup J, Mattock M, Chusney G, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia. 1997;40(11):1286.Google Scholar

  • 121. Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, Chrousos GP. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab. 1997;82(12):4167-70.Google Scholar

  • 122. Festa A, D’Agostino Jr R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102(1):42-7.Google Scholar

  • 123. Sandler S, Bendtzen K, Eizirik DL, Welsh M. Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology. 1990;126(2):1288-94.Google Scholar

  • 124. Grau AJ, Buggle F, Becher H, Werle E, Hacke W. The association of leukocyte count, fibrinogen and C-reactive protein with vascular risk factors and ischemic vascular diseases. Thromb Res. 1996;82(3):245-55.Google Scholar

  • 125. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13(6):465-76.CrossrefGoogle Scholar

  • 126. Pickup J, Crook M. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41(10):1241-8.Google Scholar

  • 127. Wannamethee SG, Lowe GD, Shaper AG, Rumley A, Lennon L, Whincup PH. The metabolic syndrome and insulin resistance: relationship to haemostatic and inflammatory markers in older non-diabetic men. Atherosclerosis. 2005;181(1):101-8.Google Scholar

  • 128. Ford ES. The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis. 2003;168(2):351-8.Google Scholar

  • 129. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007;92(2):399-404.Google Scholar

  • 130. Sjoholm A, Nystrom T. Endothelial inflammation in insulin resistance. Lancet. 2005;365(9459):610-2.Google Scholar

  • 131. Higashi Y, Goto C, Jitsuiki D, Umemura T, Nishioka K, Hidaka T, et al. Periodontal infection is associated with endothelial dysfunction in healthy subjects and hypertensive patients. Hypertension. 2008;51(2):446-53.CrossrefGoogle Scholar

  • 132. Bullon P, Morillo JM, Ramirez-Tortosa MC, Quiles JL, Newman HN, Battino M. Metabolic syndrome and periodontitis: is oxidative stress a common link? J Dent Res. 2009;88(6):503-18.Google Scholar

  • 133. Kim Y-K, Myint A-M, Lee B-H, Han C-S, Lee H-J, Kim D-J, et al. Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(7):1129-34.Google Scholar

  • 134. Rapaport MH, McAllister CG, Pickar D, Nelson DL, Paul SM. Elevated levels of soluble interleukin 2 receptors in schizophrenia. Arch Gen Psychiatry. 1989;46(3):291-2.CrossrefGoogle Scholar

  • 135. Cazzullo C, Sacchetti E, Galluzzo A, Panariello A, Colombo F, Zagliani A, et al. Cytokine profiles in drug-naive schizophrenic patients. Schizophr Res. 2001;47(2-3):293-8.Google Scholar

  • 136. Moises HW, Schindler L, Leroux M, Kirchner H. Decreased production of interferon alpha and interferon gamma in leucocyte cultures of schizophrenic patients. Acta Psychiatr Scand. 1985;72(1):45-50.Google Scholar

  • 137. Stertz L, Magalhaes PV, Kapczinski F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Current opinion in psychiatry. 2013;26(1):19-26.CrossrefGoogle Scholar

  • 138. Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS. Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature. Journal of Clinical Psychiatry. 2009;70(8):1078.Google Scholar

  • 139. Berk M, Kapczinski F, Andreazza A, Dean O, Giorlando F, Maes M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience & biobehavioral reviews. 2011;35(3):804-17.Google Scholar

  • 140. Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’Anna M, Mascarenhas M, Vargas AE, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. Journal of affective disorders. 2009;116(3):214-7.Google Scholar

  • 141. Myint A-M, Leonard BE, Steinbusch HW, Kim Y-K. Th1, Th2, and Th3 cytokine alterations in major depression. Journal of affective disorders. 2005;88(2):167-73.Google Scholar

  • 142. Kaestner F, Hettich M, Peters M, Sibrowski W, Hetzel G, Ponath G, et al. Different activation patterns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. Journal of affective disorders. 2005;87(2-3):305-11.Google Scholar

  • 143. Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(2):201-17.Google Scholar

  • 144. Maes M. Cytokines in major depression. 1994.Google Scholar

  • 145. Brundin L, Erhardt S, Bryleva E, Achtyes ED, Postolache T. The role of inflammation in suicidal behaviour. Acta Psychiatr Scand. 2015;132(3):192-203.Google Scholar

  • 146. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005.Google Scholar

  • 147. Black C, Miller BJ. Meta-analysis of cytokines and chemokines in suicidality: distinguishing suicidal versus nonsuicidal patients. Biol Psychiatry. 2015;78(1):28-37.Google Scholar

  • 148. Ducasse D, Olie E, Guillaume S, Artero S, Courtet P. A metaanalysis of cytokines in suicidal behavior. Brain Behav Immun. 2015;46:203-11.Google Scholar

  • 149. Serafini G, Pompili M, Seretti ME, Stefani H, Palermo M, Coryell W, et al. The role of inflammatory cytokines in suicidal behavior: a systematic review. Eur Neuropsychopharmacol. 2013;23(12):1672-86.Google Scholar

  • 150. Tonelli LH, Stiller J, Rujescu D, Giegling I, Schneider B, Maurer K, et al. Elevated cytokine expression in the orbitofrontal cortex of victims of suicide. Acta Psychiatr Scand. 2008;117(3):198-206.Google Scholar

  • 151. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42(2):151-7.PubMedCrossrefGoogle Scholar

  • 152. Mann JJ, Arango VA, Avenevoli S, Brent DA, Champagne FA, Clayton P, et al. Candidate endophenotypes for genetic studies of suicidal behavior. Biol Psychiatry. 2009;65(7):556-63.Google Scholar

  • 153. Hassanain M, Bhatt S, Zalcman S, Siegel A. Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat. Brain Res. 2005;1048(1-2):1-11.Google Scholar

  • 154. Bhatt S, Bhatt R, Zalcman SS, Siegel A. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat. Brain Behav Immun. 2008;22(2):224-33.CrossrefGoogle Scholar

  • 155. Dunn AJ. Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res. 2006;6(1-2):52-68.CrossrefGoogle Scholar

  • 156. Pandey GN, Rizavi HS, Ren X, Fareed J, Hoppensteadt DA, Roberts RC, et al. Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. J Psychiatr Res. 2012;46(1):57-63.CrossrefGoogle Scholar

  • 157. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, et al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry. 2009;66(3):287-92.Google Scholar

  • 158. Celik C, Erdem M, Cayci T, Ozdemir B, Ozgur Akgul E, Kurt YG, et al. The association between serum levels of neopterin and number of depressive episodes of major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(2):372-5.CrossrefGoogle Scholar

  • 159. Hoekstra R, Fekkes D, Pepplinkhuizen L, Loonen A, Tuinier S, Verhoeven W. Nitric oxide and neopterin in bipolar affective disorder. Neuropsychobiology. 2006;54(1):75-81.Google Scholar

  • 160. Korte S, Arolt V, Peters M, Weitzsch C, Rothermundt M, Kirchner H. Increased serum neopterin levels in acutely ill and recovered schizophrenic patients. Schizophr Res. 1998;32(1):63-7.CrossrefGoogle Scholar

  • 161. Sperner-Unterweger B, Barnas C, Fleischhacker WW, Fuchs D, Meise U, Reibnegger G, et al. Is schizophrenia linked to alteration in cellular immunity? Schizophr Res. 1989;2(4):417-21.Google Scholar

  • 162. Dunbar P, Hill J, Neale T, Mellsop G. Neopterin measurement provides evidence of altered cell-mediated immunity in patients with depression, but not with schizophrenia. Psychol Med. 1992;22(4):1051-7.CrossrefGoogle Scholar

  • 163. Taymur I, Ozdel K, Ozen NE, Gungor BB, Atmaca M. Urinary neopterine levels in patients with major depressive disorder: alterations after treatment with paroxetine and comparison with healthy controls. Psychiatr Danub. 2015;27(1):25-30.Google Scholar

  • 164. Abou-Saleh MT, Anderson DN, Collins J, Hughes K, Cattell RJ, Hamon CG, et al. The role of pterins in depression and the effects of antidepressive therapy. Biol Psychiatry. 1995;38(7):458-63.Google Scholar

  • 165. Tang CZ, Zhang YL, Wang WS, Li WG, Shi JP. Elevated Serum Levels of Neopterin at Admission Predicts Depression After Acute Ischemic Stroke: a 6-Month Follow-Up Study. Mol Neurobiol. 2016;53(5):3194-204.Google Scholar

  • 166. Chittiprol S, Venkatasubramanian G, Neelakantachar N, Babu SS, Reddy NA, Shetty KT, et al. Oxidative stress and neopterin abnormalities in schizophrenia: a longitudinal study. J Psychiatr Res. 2010;44(5):310-3.CrossrefGoogle Scholar

  • 167. Mattila KJ, Valle MS, Nieminen MS, Valtonen VV, Hietaniemi KL. Dental infections and coronary atherosclerosis. Atherosclerosis. 1993;103(2):205-11.Google Scholar

  • 168. Soto-Barreras U, Olvera-Rubio JO, Loyola-Rodriguez JP, Reyes-Macias JF, Martinez-Martinez RE, Patino-Marin N, et al. Peripheral arterial disease associated with caries and periodontal disease. J Periodontol. 2013;84(4):486-94.Google Scholar

  • 169. Chen YW, Umeda M, Nagasawa T, Takeuchi Y, Huang Y, Inoue Y, et al. Periodontitis may increase the risk of peripheral arterial disease. Eur J Vasc Endovasc Surg. 2008;35(2):153-8.Google Scholar

  • 170. Sfyroeras GS, Roussas N, Saleptsis VG, Argyriou C, Giannoukas AD. Association between periodontal disease and stroke. J Vasc Surg. 2012;55(4):1178-84.Google Scholar

  • 171. Leng WD, Zeng XT, Kwong JS, Hua XP. Periodontal disease and risk of coronary heart disease: An updated meta-analysis of prospective cohort studies. Int J Cardiol. 2015;201:469-72.Google Scholar

  • 172. Lockhart PB, Bolger AF, Papapanou PN, Osinbowale O, Trevisan M, Levison ME, et al. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? A scientific statement from the American Heart Association. Circulation. 2012;125(20):2520-44.Google Scholar

  • 173. Humphrey LL, Fu R, Buckley DI, Freeman M, Helfand M. Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis. J Gen Intern Med. 2008;23(12):2079-86.Google Scholar

  • 174. Rutger Persson G, Ohlsson O, Pettersson T, Renvert S. Chronic periodontitis, a significant relationship with acute myocardial infarction. Eur Heart J. 2003;24(23):2108-15.CrossrefGoogle Scholar

  • 175. Cueto A, Mesa F, Bravo M, Ocana‐Riola R. Periodontitis as risk factor for acute myocardial infarction. A case control study of Spanish adults. J Periodontal Res. 2005;40(1):36-42.CrossrefGoogle Scholar

  • 176. Andriankaja OM, Genco RJ, Dorn J, Dmochowski J, Hovey K, Falkner KL, et al. The use of different measurements and definitions of periodontal disease in the study of the association between periodontal disease and risk of myocardial infarction. J Periodontol. 2006;77(6):1067-73.Google Scholar

  • 177. Andriankaja OM, Genco RJ, Dorn J, Dmochowski J, Hovey K, Falkner KL, et al. Periodontal disease and risk of myocardial infarction: the role of gender and smoking. Eur J Epidemiol. 2007;22(10):699-705.Google Scholar

  • 178. Renvert S, Ohlsson O, Pettersson T, Persson GR. Periodontitis: a future risk of acute coronary syndrome? A follow‐up study over 3 years. J Periodontol. 2010;81(7):992-1000.Google Scholar

  • 179. Holmlund A, Hedin M, Pussinen PJ, Lerner UH, Lind L. Porphyromonas gingivalis (Pg) a possible link between impaired oral health and acute myocardial infarction. Int J Cardiol. 2011;148(2):148-53.Google Scholar

  • 180. Samani MK, Jalali F, Ahadi SMS, Hoseini SR, Sattari FD. The relationship between acute myocardial infarction and periodontitis. Caspian J Intern Med. 2013;4(2):667.Google Scholar

  • 181. Li P, He L, Sha Y, Luan Q. Periodontal status of patients with post-acute myocardial infarction. Beijing Da Xue Xue Bao Yi Xue Ban. 2013;45(1):22-6.Google Scholar

  • 182. Kodovazenitis G, Pitsavos C, Papadimitriou L, Vrotsos I, Stefanadis C, Madianos P. Association between periodontitis and acute myocardial infarction: a case-control study of a nondiabetic population. J Periodontal Res. 2014;49(2):246-52.CrossrefGoogle Scholar

  • 183. Ryden L, Buhlin K, Ekstrand E, de Faire U, Gustafsson A, Holmer J, et al. Periodontitis increases the risk of a first myocardial infarction: a report from the PAROKRANK study. Circulation. 2016:CIRCULATIONAHA. 115.020324.Google Scholar

  • 184. Yu YH, Chasman DI, Buring JE, Rose L, Ridker PM. Cardiovascular risks associated with incident and prevalent periodontal disease. J Clin Periodontol. 2015;42(1):21-8.Google Scholar

  • 185. Holmlund A, Holm G, Lind L. Severity of periodontal disease and number of remaining teeth are related to the prevalence of myocardial infarction and hypertension in a study based on 4,254 subjects. J Periodontol. 2006;77(7):1173-8.Google Scholar

  • 186. Bazile A, Bissada NF, Nair R, Siegel BP. Periodontal assessment of patients undergoing angioplasty for treatment of coronary artery disease. J Periodontol. 2002;73(6):631-6.Google Scholar

  • 187. Buhlin K, Gustafsson A, Hakansson J, Klinge B. Oral health and cardiovascular disease in Sweden. J Clin Periodontol. 2002;29(3):254-9.Google Scholar

  • 188. Parkar SM, Modi GN, Jani J. Periodontitis as risk factor for acute myocardial infarction: A case control study. Heart Views. 2013;14(1):5-11.Google Scholar

  • 189. Joshipura KJ, Rimm EB, Douglass CW, Trichopoulos D, Ascherio A, Willett WC. Poor oral health and coronary heart disease. J Dent Res. 1996;75(9):1631-6.Google Scholar

  • 190. Howell TH, Ridker PM, Ajani UA, Hennekens CH, Christen WG. Periodontal disease and risk of subsequent cardiovascular disease in U.S. male physicians. J Am Coll Cardiol. 2001;37(2):445-50.CrossrefGoogle Scholar

  • 191. Willershausen I, Weyer V, Peter M, Weichert C, Kasaj A, Munzel T, et al. Association between chronic periodontal and apical inflammation and acute myocardial infarction. Odontology. 2014;102(2):297-302.Google Scholar

  • 192. Mattila KJ, Nieminen MS, Valtonen VV, Rasi VP, Kesaniemi YA, Syrjala SL, et al. Association between dental health and acute myocardial infarction. BMJ. 1989;298(6676):779-81.Google Scholar

  • 193. Chou SH, Tung YC, Lin YS, Wu LS, Lin CP, Liou EJ, et al. Major Adverse Cardiovascular Events in Treated Periodontitis: A Population-Based Follow-Up Study from Taiwan. PLoS One. 2015;10(6):e0130807.Google Scholar

  • 194. Emingil G, Buduneli E, Aliyev A, Akilli A, Atilla G. Association between periodontal disease and acute myocardial infarction. J Periodontol. 2000;71(12):1882-6.Google Scholar

  • 195. Amoian B, Maboudi A, Abbasi V. A periodontal health assessment of hospitalized patients with myocardial infarction. Caspian J Intern Med. 2011;2(2):234-9.Google Scholar

  • 196. Wozakowska-Kaplon B, Wlosowicz M, Gorczyca-Michta I, Gorska R. Oral health status and the occurrence and clinical course of myocardial infarction in hospital phase: a casecontrol study. Cardiol J. 2013;20(4):370-7.Google Scholar

  • 197. Bahekar AA, Singh S, Saha S, Molnar J, Arora R. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am Heart J. 2007;154(5):830-7.Google Scholar

  • 198. DeStefano F, Anda RF, Kahn HS, Williamson DF, Russell CM. Dental disease and risk of coronary heart disease and mortality. BMJ. 1993;306(6879):688-91.Google Scholar

  • 199. Madianos PN, Bobetsis GA, Kinane DF. Is periodontitis associated with an increased risk of coronary heart disease and preterm and/or low birth weight births? J Clin Periodontol. 2002;29 Suppl 3:22-36; discussion 7-8.CrossrefGoogle Scholar

  • 200. Janket SJ, Baird AE, Chuang SK, Jones JA. Meta-analysis of periodontal disease and risk of coronary heart disease and stroke. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(5):559-69.Google Scholar

  • 201. Scannapieco FA, Bush RB, Paju S. Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke. A systematic review. Ann Periodontol. 2003;8(1):38-53.Google Scholar

  • 202. Khader YS, Albashaireh ZS, Alomari MA. Periodontal diseases and the risk of coronary heart and cerebrovascular diseases: a meta-analysis. J Periodontol. 2004;75(8):1046-53.Google Scholar

  • 203. Mustapha IZ, Debrey S, Oladubu M, Ugarte R. Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: a systematic review and metaanalysis. J Periodontol. 2007;78(12):2289-302.Google Scholar

  • 204. Blaizot A, Vergnes JN, Nuwwareh S, Amar J, Sixou M. Periodontal diseases and cardiovascular events: meta-analysis of observational studies. Int Dent J. 2009;59(4):197-209.Google Scholar

  • 205. Pressman GS, Qasim A, Verma N, Miyamae M, Arishiro K, Notohara Y, et al. Periodontal disease is an independent predictor of intracardiac calcification. Biomed Res Int. 2013;2013:854340.Google Scholar

  • 206. Groves DW, Krantz MJ, Hokanson JE, Johnson LR, Eckel RH, Kinney GL, et al. Comparison of Frequency and Duration of Periodontal Disease With Progression of Coronary Artery Calcium in Patients With and Without Type 1 Diabetes Mellitus. Am J Cardiol. 2015;116(6):833-7.Google Scholar

  • 207. Beck JD, Offenbacher S, Williams R, Gibbs P, Garcia R. Periodontitis: a risk factor for coronary heart disease? Ann Periodontol. 1998;3(1):127-41.CrossrefGoogle Scholar

  • 208. Mattila K, Valtonen V, Nieminen M, Huttunen JK. Dental infection and the risk of new coronary events: prospective study of patients with documented coronary artery disease. Clin Infect Dis. 1995;20(3):588-92.CrossrefGoogle Scholar

  • 209. Syrjanen J, Peltola J, Valtonen V, Iivanainen M, Kaste M, Huttunen J. Dental infections in association with cerebral infarction in young and middle‐aged men. J Intern Med. 1989;225(3):179-84.Google Scholar

  • 210. Teeuw WJ, Slot DE, Susanto H, Gerdes VE, Abbas F, D’Aiuto F, et al. Treatment of periodontitis improves the atherosclerotic profile: a systematic review and meta-analysis. J Clin Periodontol. 2014;41(1):70-9.Google Scholar

  • 211. Schmitt A, Carra MC, Boutouyrie P, Bouchard P. Periodontitis and arterial stiffness: a systematic review and meta-analysis. J Clin Periodontol. 2015;42(11):977-87.Google Scholar

  • 212. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK, Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340(1):14-22.Google Scholar

  • 213. Beck JD, Elter JR, Heiss G, Couper D, Mauriello SM, Offenbacher S. Relationship of periodontal disease to carotid artery intimamedia wall thickness: the atherosclerosis risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2001;21(11):1816-22.CrossrefGoogle Scholar

  • 214. Ravon NA, Hollender LG, McDonald V, Persson GR. Signs of carotid calcification from dental panoramic radiographs are in agreement with Doppler sonography results. J Clin Periodontol. 2003;30(12):1084-90.Google Scholar

  • 215. Tapashetti RP, Guvva S, Patil SR, Sharma S, Pushpalatha HM. C-reactive Protein as Predict of Increased Carotid Intima Media Thickness in Patients with Chronic Periodontitis. J Int Oral Health. 2014;6(4):47-52.Google Scholar

  • 216. Lafon A, Pereira B, Dufour T, Rigouby V, Giroud M, Bejot Y, et al. Periodontal disease and stroke: a meta-analysis of cohort studies. Eur J Neurol. 2014;21(9):1155-61, e66-7.CrossrefGoogle Scholar

  • 217. Ahn YB, Shin MS, Han DH, Sukhbaatar M, Kim MS, Shin HS, et al. Periodontitis is associated with the risk of subclinical atherosclerosis and peripheral arterial disease in Korean adults. Atherosclerosis. 2016;251:311-8.Google Scholar

  • 218. Calapkorur MU, Alkan BA, Tasdemir Z, Akcali Y, Saatci E. Association of peripheral arterial disease with periodontal disease: analysis of inflammatory cytokines and an acute phase protein in gingival crevicular fluid and serum. J Periodontal Res. 2017;52(3):532-9.CrossrefGoogle Scholar

  • 219. Aoyama N, Suzuki JI, Kobayashi N, Hanatani T, Ashigaki N, Yoshida A, et al. Periodontitis deteriorates peripheral arterial disease in Japanese population via enhanced systemic inflammation. Heart Vessels. 2017;32(11):1314-9.CrossrefGoogle Scholar

  • 220. Mendez MV, Scott T, LaMorte W, Vokonas P, Menzoian JO, Garcia R. An association between periodontal disease and peripheral vascular disease. Am J Surg. 1998;176(2):153-7.Google Scholar

  • 221. Hung HC, Willett W, Merchant A, Rosner BA, Ascherio A, Joshipura KJ. Oral health and peripheral arterial disease. Circulation. 2003;107(8):1152-7.Google Scholar

  • 222. Yang S, Zhao LS, Cai C, Shi Q, Wen N, Xu J. Association between periodontitis and peripheral artery disease: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2018;18(1):141.Google Scholar

  • 223. Kebschull M, Demmer RT, Papapanou PN. “Gum bug, leave my heart alone!”--epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res. 2010;89(9):879-902.Google Scholar

  • 224. Joshipura K, Ritchie C, Douglass C. Strength of evidence linking oral conditions and systemic disease. Compend Contin Educ Dent Suppl. 2000(30):12-23; quiz 65.Google Scholar

  • 225. Li C, Lv Z, Shi Z, Zhu Y, Wu Y, Li L, et al. Periodontal therapy for the management of cardiovascular disease in patients with chronic periodontitis. Cochrane Database Syst Rev. 2014(8):Cd009197.Google Scholar

  • 226. Joshipura KJ, Douglass CW, Willett WC. Possible explanations for the tooth loss and cardiovascular disease relationship. Ann Periodontol. 1998;3(1):175-83.CrossrefGoogle Scholar

  • 227. Suvan J, D’Aiuto F, Moles DR, Petrie A, Donos N. Association between overweight/obesity and periodontitis in adults. A systematic review. Obes Rev. 2011;12(5):e381-404.Google Scholar

  • 228. Saito T, Shimazaki Y, Sakamoto M. Obesity and periodontitis. N Engl J Med. 1998;339(7):482-3.Google Scholar

  • 229. Saito T, Shimazaki Y, Koga T, Tsuzuki M, Ohshima A. Relationship between upper body obesity and periodontitis. J Dent Res. 2001;80(7):1631-6.Google Scholar

  • 230. Modeer T, Blomberg C, Wondimu B, Lindberg TY, Marcus C. Association between obesity and periodontal risk indicators in adolescents. Int J Pediatr Obes. 2011;6(2-2):e264-70.CrossrefGoogle Scholar

  • 231. Sakki TK, Knuuttila ML, Vimpari SS, Hartikainen MS. Association of lifestyle with periodontal health. Community Dent Oral Epidemiol. 1995;23(3):155-8.Google Scholar

  • 232. Wakai K, Kawamura T, Umemura O, Hara Y, Machida J, Anno T, et al. Associations of medical status and physical fitness with periodontal disease. J Clin Periodontol. 1999;26(10):664-72.Google Scholar

  • 233. Gortmaker SL, Dietz WH, Jr., Cheung LW. Inactivity, diet, and the fattening of America. J Am Diet Assoc. 1990;90(9):1247-52, 55.Google Scholar

  • 234. Ching PL, Willett WC, Rimm EB, Colditz GA, Gortmaker SL, Stampfer MJ. Activity level and risk of overweight in male health professionals. Am J Public Health. 1996;86(1):25-30.Google Scholar

  • 235. Coakley EH, Rimm EB, Colditz G, Kawachi I, Willett W. Predictors of weight change in men: results from the Health Professionals Follow-up Study. Int J Obes Relat Metab Disord. 1998;22(2):89-96.Google Scholar

  • 236. Hu FB, Sigal RJ, Rich-Edwards JW, Colditz GA, Solomon CG, Willett WC, et al. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA. 1999;282(15):1433-9.Google Scholar

  • 237. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235-61.Google Scholar

  • 238. Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review. Int J Sports Med. 2000;21(1):1-12.Google Scholar

  • 239. Chavarry NG, Vettore MV, Sansone C, Sheiham A. The relationship between diabetes mellitus and destructive periodontal disease: a meta-analysis. Oral Health Prev Dent. 2009;7(2):107-27.Google Scholar

  • 240. Khader YS, Dauod AS, El-Qaderi SS, Alkafajei A, Batayha WQ. Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications. 2006;20(1):59-68.Google Scholar

  • 241. Mealey BL, Oates TW. Diabetes mellitus and periodontal diseases. J Periodontol. 2006;77(8):1289-303.Google Scholar

  • 242. Marigo L, Cerreto R, Giuliani M, Somma F, Lajolo C, Cordaro M. Diabetes mellitus: biochemical, histological and microbiological aspects in periodontal disease. Eur Rev Med Pharmacol Sci. 2011;15(7):751-8.Google Scholar

  • 243. Taylor GW, Borgnakke WS. Periodontal disease: associations with diabetes, glycemic control and complications. Oral Dis. 2008;14(3):191-203.CrossrefGoogle Scholar

  • 244. Emrich LJ, Shlossman M, Genco RJ. Periodontal disease in non-insulin-dependent diabetes mellitus. J Periodontol. 1991;62(2):123-31.Google Scholar

  • 245. Sandler HC, Stahl SS. Prevalence of periodontal disease in a hospitalized population. J Dent Res. 1960;39:439-49.Google Scholar

  • 246. Christgau M, Palitzsch KD, Schmalz G, Kreiner U, Frenzel S. Healing response to non-surgical periodontal therapy in patients with diabetes mellitus: clinical, microbiological, and immunologic results. J Clin Periodontol. 1998;25(2):112-24.CrossrefGoogle Scholar

  • 247. Seppala B, Seppala M, Ainamo J. A longitudinal study on insulin-dependent diabetes mellitus and periodontal disease. J Clin Periodontol. 1993;20(3):161-5.CrossrefGoogle Scholar

  • 248. Hintao J, Teanpaisan R, Chongsuvivatwong V, Ratarasan C, Dahlen G. The microbiological profiles of saliva, supragingival and subgingival plaque and dental caries in adults with and without type 2 diabetes mellitus. Oral Microbiol Immunol. 2007;22(3):175-81.Google Scholar

  • 249. Taylor GW, Manz MC, Borgnakke WS. Diabetes, periodontal diseases, dental caries, and tooth loss: a review of the literature. Compend Contin Educ Dent Suppl. 2004;25(3):179- 84, 86-8, 90; quiz 92.Google Scholar

  • 250. Dodds MW, Yeh CK, Johnson DA. Salivary alterations in type 2 (non-insulin-dependent) diabetes mellitus and hypertension. Community Dent Oral Epidemiol. 2000;28(5):373-81.CrossrefGoogle Scholar

  • 251. Rees TD. Periodontal management of the patient with diabetes mellitus. Periodontol 2000. 2000;23:63-72.Google Scholar

  • 252. Sandberg GE, Sundberg HE, Wikblad KF. A controlled study of oral self-care and self-perceived oral health in type 2 diabetic patients. Acta Odontol Scand. 2001;59(1):28-33.Google Scholar

  • 253. Ainamo J, Lahtinen A, Uitto VJ. Rapid periodontal destruction in adult humans with poorly controlled diabetes. A report of 2 cases. J Clin Periodontol. 1990;17(1):22-8.Google Scholar

  • 254. Tsai C, Hayes C, Taylor GW. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent Oral Epidemiol. 2002;30(3):182-92.CrossrefGoogle Scholar

  • 255. Taylor GW, Burt BA, Becker MP, Genco RJ, Shlossman M. Glycemic control and alveolar bone loss progression in type 2 diabetes. Ann Periodontol. 1998;3(1):30-9.CrossrefGoogle Scholar

  • 256. Taylor GW. Periodontal treatment and its effects on glycemic control: A review of the evidence. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(3):311-6.Google Scholar

  • 257. Katz PP, Wirthlin MR, Jr., Szpunar SM, Selby JV, Sepe SJ, Showstack JA. Epidemiology and prevention of periodontal disease in individuals with diabetes. Diabetes Care. 1991;14(5):375-85.Google Scholar

  • 258. Shlossman M, Knowler WC, Pettitt DJ, Genco RJ. Type 2 diabetes mellitus and periodontal disease. J Am Dent Assoc. (1939). 1990;121(4):532-6.Google Scholar

  • 259. Tervonen T, Oliver RC. Long-term control of diabetes mellitus and periodontitis. J Clin Periodontol. 1993;20(6):431-5.CrossrefGoogle Scholar

  • 260. Soskolne WA. Epidemiological and clinical aspects of periodontal diseases in diabetics. Ann Periodontol. 1998;3(1):3-12.CrossrefGoogle Scholar

  • 261. Almas K, Al-Qahtani M, Al-Yami M, Khan N. The relationship between periodontal disease and blood glucose level among type II diabetic patients. J Contemp Dent Pract. 2001;2(4):18-25.Google Scholar

  • 262. Sandberg GE, Sundberg HE, Fjellstrom CA, Wikblad KF. Type 2 diabetes and oral health: a comparison between diabetic and non-diabetic subjects. Diabetes Res Clin Pract. 2000;50(1):27-34.CrossrefGoogle Scholar

  • 263. Rajhans NS, Kohad RM, Chaudhari VG, Mhaske NH. A clinical study of the relationship between diabetes mellitus and periodontal disease. J Indian Soc Periodontol. 2011;15(4):388-92.Google Scholar

  • 264. Khader YS, Albashaireh ZS, Hammad MM. Periodontal status of type 2 diabetics compared with nondiabetics in north Jordan. East Mediterr Health J. 2008;14(3):654-61.Google Scholar

  • 265. Pathak A, Shakya V, Chandra A, Goel K. Association between diabetes mellitus and periodontal status in north Indian adults. European J Gen Dent. 2013;2(1):58-61.Google Scholar

  • 266. Jenkins DJ, Axelsen M, Kendall CW, Augustin LS, Vuksan V, Smith U. Dietary fibre, lente carbohydrates and the insulinresistant diseases. Br J Nutr. 2000;83(S1):S157-S63.Google Scholar

  • 267. Merchant AT, Pitiphat W, Franz M, Joshipura KJ. Whole-grain and fiber intakes and periodontitis risk in men. Am J Clin Nutr. 2006;83(6):1395-400.Google Scholar

  • 268. Zadik Y, Bechor R, Galor S, Levin L. Periodontal disease might be associated even with impaired fasting glucose. Br Dent J. 2010;208(10):E20.Google Scholar

  • 269. Lalla E, Cheng B, Lal S, Tucker S, Greenberg E, Goland R, et al. Periodontal changes in children and adolescents with diabetes: a case-control study. Diabetes Care. 2006;29(2):295-9.CrossrefGoogle Scholar

  • 270. Lalla E, Cheng B, Lal S, Kaplan S, Softness B, Greenberg E, et al. Diabetes-related parameters and periodontal conditions in children. J Periodontal Res. 2007;42(4):345-9.Google Scholar

  • 271. Bakhshandeh S, Murtomaa H, Vehkalahti MM, Mofid R, Suomalainen K. Oral self-care and use of dental services among adults with diabetes mellitus. Oral Health Prev Dent. 2008;6(4):279-86.Google Scholar

  • 272. Kneckt MC, Syrjala AM, Knuuttila ML. Attributions to dental and diabetes health outcomes. J Clin Periodontol. 2000;27(3):205-11.Google Scholar

  • 273. Kneckt MC, Keinanen-Kiukaanniemi SM, Knuuttila ML, Syrjala AM. Self-esteem as a characteristic of adherence to diabetes and dental self-care regimens. J Clin Periodontol. 2001;28(2):175-80.Google Scholar

  • 274. Syrjala AM, Kneckt MC, Knuuttila ML. Dental self-efficacy as a determinant to oral health behaviour, oral hygiene and HbA1c level among diabetic patients. J Clin Periodontol. 1999;26(9):616-21.Google Scholar

  • 275. Syrjala AM, Niskanen MC, Knuuttila ML. The theory of reasoned action in describing tooth brushing, dental caries and diabetes adherence among diabetic patients. J Clin Periodontol. 2002;29(5):427-32.Google Scholar

  • 276. Merchant AT, Oranbandid S, Jethwani M, Choi YH, Morrato EH, Pitiphat W, et al. Oral care practices and A1c among youth with type 1 and type 2 diabetes. J Periodontol. 2012;83(7):856-63.Google Scholar

  • 277. Lee HK, Choi SH, Won KC, Merchant AT, Song KB, Jeong SH, et al. The effect of intensive oral hygiene care on gingivitis and periodontal destruction in type 2 diabetic patients. Yonsei Med J. 2009;50(4):529-36.CrossrefGoogle Scholar

  • 278. Orlando VA, Johnson LR, Wilson AR, Maahs DM, Wadwa RP, Bishop FK, et al. Oral Health Knowledge and Behaviors among Adolescents with Type 1 Diabetes. Int J Dent. 2010;2010:942124.Google Scholar

  • 279. Siudikiene J, Maciulskiene V, Dobrovolskiene R, Nedzelskiene I. Oral hygiene in children with type I diabetes mellitus. Stomatologija. 2005;7(1):24-7.Google Scholar

  • 280. D’Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, et al. Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab. 2008;93(10):3989-94.Google Scholar

  • 281. Khader Y, Khassawneh B, Obeidat B, Hammad M, El-Salem K, Bawadi H, et al. Periodontal status of patients with metabolic syndrome compared to those without metabolic syndrome. J Periodontol. 2008;79(11):2048-53.Google Scholar

  • 282. Shimazaki Y, Saito T, Yonemoto K, Kiyohara Y, Iida M, Yamashita Y. Relationship of metabolic syndrome to periodontal disease in Japanese women: the Hisayama Study. J Dent Res. 2007;86(3):271-5.Google Scholar

  • 283. Cutler CW, Shinedling EA, Nunn M, Jotwani R, Kim BO, Nares S, et al. Association between periodontitis and hyperlipidemia: cause or effect? J Periodontol. 1999;70(12):1429-34.Google Scholar

  • 284. Nishimura F, Murayama Y. Periodontal inflammation and insulin resistance--lessons from obesity. J Dent Res. 2001;80(8):1690-4.Google Scholar

  • 285. Al-Zahrani MS, Borawski EA, Bissada NF. Periodontitis and three health-enhancing behaviors: maintaining normal weight, engaging in recommended level of exercise, and consuming a high-quality diet. J Periodontol. 2005;76(8):1362-6.Google Scholar

  • 286. Chaffee BW, Weston SJ. Association between chronic periodontal disease and obesity: a systematic review and meta-analysis. J Periodontol. 2010;81(12):1708-24.Google Scholar

  • 287. Marchetti E, Monaco A, Procaccini L, Mummolo S, Gatto R, Tete S, et al. Periodontal disease: the influence of metabolic syndrome. Nutr Metab (Lond). 2012;9(1):88.CrossrefGoogle Scholar

  • 288. Desvarieux M, Demmer RT, Jacobs DR, Jr., Rundek T, Boden-Albala B, Sacco RL, et al. Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (INVEST). J Hypertens. 2010;28(7):1413-21.Google Scholar

  • 289. Lee KS, Lee SG, Kim EK, Jin HJ, Im SU, Lee HK, et al. Metabolic syndrome parameters in adolescents may be determinants for the future periodontal diseases. J Clin Periodontol. 2015;42(2):105-12.Google Scholar

  • 290. Morita T, Ogawa Y, Takada K, Nishinoue N, Sasaki Y, Motohashi M, et al. Association between periodontal disease and metabolic syndrome. J Public Health Dent. 2009;69(4):248-53.Google Scholar

  • 291. Franchini R, Petri A, Migliario M, Rimondini L. Poor oral hygiene and gingivitis are associated with obesity and overweight status in paediatric subjects. J Clin Periodontol. 2011;38(11):1021-8.Google Scholar

  • 292. Nishimura F, Iwamoto Y, Mineshiba J, Shimizu A, Soga Y, Murayama Y. Periodontal disease and diabetes mellitus: the role of tumor necrosis factor-alpha in a 2-way relationship. J Periodontol. 2003;74(1):97-102.Google Scholar

  • 293. Lawrence D, Jablensky AV, Holman CD, Pinder TJ. Mortality in Western Australian psychiatric patients. Soc Psychiatry Psychiatr Epidemiol. 2000;35(8):341-7.Google Scholar

  • 294. Mirza I, Day R, Phelan M, Wulff-Cochrane V. Oral health of psychiatric in-patients: a point prevalence survey of an innercity hospital. Psychiatric Bulletin. 2001;25(4):143-5.Google Scholar

  • 295. Cullinan MP, Ford PJ, Seymour GJ. Periodontal disease and systemic health: current status. Aust Dent J. 2009;54 Suppl 1:S62-9.Google Scholar

  • 296. Chapple IL. The impact of oral disease upon systemic health- Symposium overview. J Dent. 2009;37(8):S568-71.Google Scholar

  • 297. Haumschild MS, Haumschild RJ. The importance of oral health in long-term care. J Am Med Dir Assoc. 2009;10(9):667-71.CrossrefGoogle Scholar

  • 298. Williams RC, Barnett AH, Claffey N, Davis M, Gadsby R, Kellett M, et al. The potential impact of periodontal disease on general health: a consensus view. Curr Med Res Opin. 2008;24(6):1635-43.CrossrefGoogle Scholar

  • 299. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR, Jr., Papapanou PN, et al. Relationship between periodontal disease, tooth loss, and carotid artery plaque: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Stroke. 2003;34(9):2120-5.Google Scholar

  • 300. Shultis WA, Weil EJ, Looker HC, Curtis JM, Shlossman M, Genco RJ, et al. Effect of periodontitis on overt nephropathy and end-stage renal disease in type 2 diabetes. Diabetes Care. 2007;30(2):306-11.CrossrefGoogle Scholar

  • 301. Azarpazhooh A, Leake JL. Systematic review of the association between respiratory diseases and oral health. J Periodontol. 2006;77(9):1465-82.Google Scholar

  • 302. Scannapieco FA. Systemic effects of periodontal diseases. Dent Clin North Am. 2005;49(3):533-50, vi.Google Scholar

  • 303. Angelillo IF, Nobile CG, Pavia M, De Fazio P, Puca M, Amati A. Dental health and treatment needs in institutionalized psychiatric patients in Italy. Community Dent Oral Epidemiol. 1995;23(6):360-4.CrossrefGoogle Scholar

  • 304. Burchell A, Fernbacher S, Lewis R, Neil A. “ Dental as Anything” Inner South Community Health Service Dental Outreach to People with a Mental Illness. Aust J Prim Health. 2006;12(2):75-82.CrossrefGoogle Scholar

  • 305. Rekha R, Hiremath SS. Oral health status and treatment requirments of confectionery workers in Bangalore city. A comparative study. Indian J Dent Res. 2002;13(3-4):161-5.Google Scholar

  • 306. Tang WK, Sun FC, Ungvari GS, O’Donnell D. Oral health of psychiatric in-patients in Hong Kong. Int J Soc Psychiatry. 2004;50(2):186-91.CrossrefGoogle Scholar

  • 307. Kisely S, Baghaie H, Lalloo R, Siskind D, Johnson NW. A systematic review and meta-analysis of the association between poor oral health and severe mental illness. Psychosom Med. 2015;77(1):83-92.Google Scholar

  • 308. Warren KR, Postolache TT, Groer ME, Pinjari O, Kelly DL, Reynolds MA. Role of chronic stress and depression in periodontal diseases. Periodontol 2000. 2014;64(1):127-38.Google Scholar

  • 309. Alkan A, Cakmak O, Yilmaz S, Cebi T, Gurgan C. Relationship Between Psychological Factors and Oral Health Status and Behaviours. Oral Health Prev Dent. 2015;13(4):331-9.Google Scholar

  • 310. O’Dowd LK, Durham J, McCracken GI, Preshaw PM. Patients’ experiences of the impact of periodontal disease. J Clin Periodontol. 2010;37(4):334-9.CrossrefGoogle Scholar

  • 311. Beck AT. Cognitive therapy. A 30-year retrospective. Am Psychol. 1991;46(4):368-75.Google Scholar

  • 312. Little JW. Dental implications of mood disorders. Gen Dent. 2004;52(5):442-50; quiz 51.Google Scholar

  • 313. Clark DB. Dental care for the patient with bipolar disorder. J Can Dent Assoc. 2003;69(1):20-4.Google Scholar

  • 314. Page MM. Psychotropic drugs and dentistry. Aust Prescr. 2007;30(4):98-101.CrossrefGoogle Scholar

  • 315. Cormac I, Jenkins P. Understanding the importance of oral health in psychiatric patients. Adv Psychiatr Treat. 1999;5(1):53-60.Google Scholar

  • 316. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th Edition. Washington, DC; 2013.Google Scholar

  • 317. Coculescu EC, Radu A, Coculescu BI. Burning mouth syndrome: a review on diagnosis and treatment. J Med Life. 2014;7(4):512-5.Google Scholar

  • 318. Bardow A, Nyvad B, Nauntofte B. Relationships between medication intake, complaints of dry mouth, salivary flow rate and composition, and the rate of tooth demineralization in situ. Arch Oral Biol. 2001;46(5):413-23.CrossrefGoogle Scholar

  • 319. Lewis S, Jagger RG, Treasure E. The oral health of psychiatric in-patients in South Wales. Spec Care Dentist. 2001;21(5):182-6.Google Scholar

  • 320. Ramon T, Grinshpoon A, Zusman SP, Weizman A. Oral health and treatment needs of institutionalized chronic psychiatric patients in Israel. Eur Psychiatry. 2003;18(3):101-5.CrossrefGoogle Scholar

  • 321. Lo Russo L, Campisi G, Di Fede O, Di Liberto C, Panzarella V, Lo Muzio L. Oral manifestations of eating disorders: a critical review. Oral Dis. 2008;14(6):479-84.Google Scholar

  • 322. Milosevic A. Eating disorders and the dentist. Br Dent J. 1999;186(3):109-13.Google Scholar

  • 323. Lalloo R, Kisely S, Amarasinghe H, Perera R, Johnson N. Oral health of patients on psychotropic medications: a study of outpatients in Queensland. Australas Psychiatry. 2013;21(4):338-42.CrossrefGoogle Scholar

  • 324. Bretz WA. Oral profiles of bulimic women: Diagnosis and management. What is the evidence? J Evid Based Dent Pract. 2002;2(4):267-72.Google Scholar

  • 325. Ebersole JL, Cappelli D. Acute-phase reactants in infections and inflammatory diseases. Periodontol 2000. 2000;23:19-49.CrossrefGoogle Scholar

  • 326. Loos BG. Systemic markers of inflammation in periodontitis. J Periodontol. 2005;76(11 Suppl):2106-15.Google Scholar

  • 327. Kweider M, Lowe GD, Murray GD, Kinane DF, McGowan DA. Dental disease, fibrinogen and white cell count; links with myocardial infarction? Scott Med J. 1993;38(3):73-4.Google Scholar

  • 328. Slade GD, Offenbacher S, Beck JD, Heiss G, Pankow JS. Acutephase inflammatory response to periodontal disease in the US population. J Dent Res. 2000;79(1):49-57.Google Scholar

  • 329. Wu T, Trevisan M, Genco RJ, Falkner KL, Dorn JP, Sempos CT. Examination of the relation between periodontal health status and cardiovascular risk factors: serum total and high density lipoprotein cholesterol, C-reactive protein, and plasma fibrinogen. Am J Epidemiol. 2000;151(3):273-82.Google Scholar

  • 330. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation. 1998;98(8):731-3.Google Scholar

  • 331. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836-43.Google Scholar

  • 332. Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996;334(26):1717-25.Google Scholar

  • 333. Skoog T, Dichtl W, Boquist S, Skoglund-Andersson C, Karpe F, Tang R, et al. Plasma tumour necrosis factor-alpha and early carotid atherosclerosis in healthy middle-aged men. Eur Heart J. 2002;23(5):376-83.CrossrefGoogle Scholar

  • 334. Joshipura KJ, Wand HC, Merchant AT, Rimm EB. Periodontal disease and biomarkers related to cardiovascular disease. J Dent Res. 2004;83(2):151-5.Google Scholar

  • 335. Moutsopoulos NM, Madianos PN. Low-grade inflammation in chronic infectious diseases: paradigm of periodontal infections. Ann N Y Acad Sci. 2006;1088:251-64.Google Scholar

  • 336. Ebersole JL, Machen RL, Steffen MJ, Willmann DE. Systemic acute-phase reactants, C-reactive protein and haptoglobin, in adult periodontitis. Clin Exp Immunol. 1997;107(2):347-52.Google Scholar

  • 337. Noack B, Genco RJ, Trevisan M, Grossi S, Zambon JJ, De Nardin E. Periodontal infections contribute to elevated systemic C-reactive protein level. J Periodontol. 2001;72(9):1221-7.Google Scholar

  • 338. Buhlin K, Hultin M, Norderyd O, Persson L, Pockley AG, Rabe P, et al. Risk factors for atherosclerosis in cases with severe periodontitis. J Clin Periodontol. 2009;36(7):541-9.CrossrefGoogle Scholar

  • 339. Gomes-Filho IS, Freitas Coelho JM, da Cruz SS, Passos JS, Teixeira de Freitas CO, Aragao Farias NS, et al. Chronic periodontitis and C-reactive protein levels. J Periodontol. 2011;82(7):969-78.Google Scholar

  • 340. Pejcic A, Kesic LJ, Milasin J. C-reactive protein as a systemic marker of inflammation in periodontitis. Eur J Clin Microbiol Infect Dis. 2011;30(3):407-14.CrossrefGoogle Scholar

  • 341. Schwahn C, Volzke H, Robinson DM, Luedemann J, Bernhardt O, Gesch D, et al. Periodontal disease, but not edentulism, is independently associated with increased plasma fibrinogen levels. Thromb Haemost. 2004;92(02):244-52.Google Scholar

  • 342. Kweider M, Lowe G, Murray G, Kinane D, McGowan D. Dental disease, fibrinogen and white cell count; links with myocardial infarction? Scott Med J. 1993;38(3):73-4.Google Scholar

  • 343. Zheng P, Chen H, Shi S, Jepsen S, Eberhard J. Periodontal parameters and platelet-activating factor levels in serum and gingival crevicular fluid in a Chinese population. J Clin Periodontol. 2006;33(11):797-802.CrossrefGoogle Scholar

  • 344. Chen H, Zheng P, Zhu H, Zhu J, Zhao L, El Mokhtari NE, et al. Platelet-activating factor levels of serum and gingival crevicular fluid in nonsmoking patients with periodontitis and/or coronary heart disease. Clin Oral Investig. 2010;14(6):629-36.Google Scholar

  • 345. Loos BG, Craandijk J, Hoek FJ, Wertheim-van Dillen PM, van der Velden U. Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontitis patients. J Periodontol. 2000;71(10):1528-34.Google Scholar

  • 346. Passoja A, Puijola I, Knuuttila M, Niemela O, Karttunen R, Raunio T, et al. Serum levels of interleukin‐10 and tumour necrosis factor‐α in chronic periodontitis. J Clin Periodontol. 2010;37(10):881-7.Google Scholar

  • 347. Preshaw PM, Taylor JJ. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J Clin Periodontol. 2011;38 Suppl 11:60-84.CrossrefGoogle Scholar

  • 348. Teles R, Wang CY. Mechanisms involved in the association between periodontal diseases and cardiovascular disease. Oral Dis. 2011;17(5):450-61.CrossrefGoogle Scholar

  • 349. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu W-H, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002-17.Google Scholar

  • 350. Sconyers JR, Crawford J, Moriarty J. Relationship of bacteremia to toothbrushing in patients with periodontitis. J Am Dent Assoc. 1973;87(3):616-22.Google Scholar

  • 351. Forner L, Larsen T, Kilian M, Holmstrup P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol. 2006;33(6):401-7.CrossrefGoogle Scholar

  • 352. Cahill TJ, Harrison JL, Jewell P, Onakpoya I, Chambers JB, Dayer M, et al. Antibiotic prophylaxis for infective endocarditis: a systematic review and meta-analysis. Heart. 2017;103(12):937-44.Google Scholar

  • 353. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Leducq Transatlantic Network on Atherothrombosis. 2017;70(2):252-89.Google Scholar

  • 354. Lazansky JP, Robinson L, Rodofsky L. Factors influencing the incidence of bacteremias following surgical procedures in the oral cavity. J Dent Res. 1949;28(6):533-43.CrossrefGoogle Scholar

  • 355. Tomas I, Diz P, Tobias A, Scully C, Donos N. Periodontal health status and bacteraemia from daily oral activities: systematic review/meta‐analysis. J Clin Periodontol. 2012;39(3):213-28.Google Scholar

  • 356. Tonetti MS, Van Dyke TE. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/ AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol. 2013;40 Suppl 14:S24-9.CrossrefGoogle Scholar

  • 357. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005;38(1):135-87.Google Scholar

  • 358. Moutsopoulos NM, Madianos PN. Low‐grade inflammation in chronic infectious diseases. Ann N Y Acad Sci. 2006;1088(1):251-64.Google Scholar

  • 359. Hayashi C, Gudino CV, Gibson FC, 3rd, Genco CA. Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol. 2010;25(5):305-16.Google Scholar

  • 360. Gibson FC, 3rd, Yumoto H, Takahashi Y, Chou HH, Genco CA. Innate immune signaling and Porphyromonas gingivalisaccelerated atherosclerosis. J Dent Res. 2006;85(2):106-21.Google Scholar

  • 361. Gibson FC, 3rd, Genco CA. Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs. Curr Pharm Des. 2007;13(36):3665-75.Google Scholar

  • 362. Chiu B. Multiple infections in carotid atherosclerotic plaques. Am Heart J. 1999;138(5 Pt 2):S534-6.Google Scholar

  • 363. Kozarov EV, Dorn BR, Shelburne CE, Dunn Jr WA, Progulske- Fox A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol. 2005;25(3):e17-e8.Google Scholar

  • 364. Schenkein HA, Loos BG. Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases. J Clin Periodontol. 2013;40(0 14):S51-S69.Google Scholar

  • 365. Roth GA, Ankersmit HJ, Brown VB, Papapanou PN, Schmidt AM, Lalla E. Porphyromonas gingivalis infection and cell death in human aortic endothelial cells. FEMS Microbiol Lett. 2007;272(1):106-13.Google Scholar

  • 366. Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol. 2009;4:71-95.Google Scholar

  • 367. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251-62.Google Scholar

  • 368. Page RC. The pathobiology of periodontal diseases may affect systemic diseases: inversion of a paradigm. Ann Periodontol. 1998;3(1):108-20.CrossrefGoogle Scholar

  • 369. Hajishengallis G, Sharma A, Russell MW, Genco RJ. Interactions of oral pathogens with toll-like receptors: possible role in atherosclerosis. Ann Periodontol. 2002;7(1):72-8.CrossrefGoogle Scholar

  • 370. Soder PO, Meurman J, Jogestrand T, Nowak J, Soder B. Matrix metalloproteinase‐9 and tissue inhibitor of matrix metalloproteinase‐1 in blood as markers for early atherosclerosis in subjects with chronic periodontitis. J Periodontal Res. 2009;44(4):452-8.Google Scholar

  • 371. Behle JH, Sedaghatfar MH, Demmer RT, Wolf DL, Celenti R, Kebschull M, et al. Heterogeneity of systemic inflammatory responses to periodontal therapy. J Clin Periodontol. 2009;36(4):287-94.CrossrefGoogle Scholar

  • 372. Schenkein HA, Barbour SE, Berry C, Kipps B, Tew JG. Invasion of human vascular endothelial cells by Actinobacillus actinomycetemcomitans via the receptor for platelet-activating factor. Infect Immun. 2000;68(9):5416-9.Google Scholar

  • 373. Losche W, Marshal G, Krause S, Kocher T, Kinane D. Lipoprotein‐associated phospholipase A2 and plasma lipids in patients with destructive periodontal disease. J Clin Periodontol. 2005;32(6):640-4.CrossrefGoogle Scholar

  • 374. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004;279(47):48487-90.Google Scholar

  • 375. Ridker PM, Brown NJ, Vaughan DE, Harrison DG, Mehta JL. Established and emerging plasma biomarkers in the prediction of first atherothrombotic events. Circulation. 2004;109(25 Suppl 1):Iv6-19.Google Scholar

  • 376. Blake GJ, Ridker PM. High sensitivity C-reactive protein for predicting cardiovascular disease: an inflammatory hypothesis. Eur Heart J. 2001;22(5):349-52.CrossrefGoogle Scholar

  • 377. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336(14):973-9.Google Scholar

  • 378. Blake GJ, Ridker PM. C-reactive protein: a surrogate risk marker or mediator of atherothrombosis? Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R1250-2.Google Scholar

  • 379. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA. 1998;279(18):1477-82.Google Scholar

  • 380. Blake GJ, Rifai N, Buring JE, Ridker PM. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation. 2003;108(24):2993-9.Google Scholar

  • 381. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557-65.Google Scholar

  • 382. Florez H, Castillo-Florez S, Mendez A, Casanova-Romero P, Larreal-Urdaneta C, Lee D, et al. C-reactive protein is elevated in obese patients with the metabolic syndrome. Diabetes Res Clin Pract. 2006;71(1):92-100.Google Scholar

  • 383. Ridker PM. C-reactive protein: eighty years from discovery to emergence as a major risk marker for cardiovascular disease. Clin Chem. 2009;55(2):209-15.Google Scholar

  • 384. Soder PO, Soder B, Nowak J, Jogestrand T. Early carotid atherosclerosis in subjects with periodontal diseases. Stroke. 2005;36(6):1195-200.CrossrefGoogle Scholar

  • 385. Leivadaros E, van der Velden U, Bizzarro S, ten Heggeler JM, Gerdes VE, Hoek FJ, et al. A pilot study into measurements of markers of atherosclerosis in periodontitis. J Periodontol. 2005;76(1):121-8.Google Scholar

  • 386. Meurman JH, Sanz M, Janket SJ. Oral health, atherosclerosis, and cardiovascular disease. Crit Rev Oral Biol Med. 2004;15(6):403-13.Google Scholar

  • 387. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR, Jr., Sacco RL, et al. Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation. 2005;111(5):576-82.Google Scholar

  • 388. Haynes WG, Stanford C. Periodontal disease and atherosclerosis: from dental to arterial plaque. Arterioscler Thromb Vasc Biol. 2003;23(8):1309-11.Google Scholar

  • 389. Tousoulis D, Davies G, Stefanadis C, Toutouzas P, Ambrose JA. Inflammatory and thrombotic mechanisms in coronary atherosclerosis. Heart. 2003;89(9):993-7.Google Scholar

  • 390. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135-43.Google Scholar

  • 391. Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J Clin Periodontol. 2008;35(4):277-90.Google Scholar

  • 392. Buhlin K, Gustafsson A, Pockley AG, Frostegard J, Klinge B. Risk factors for cardiovascular disease in patients with periodontitis. Eur Heart J. 2003;24(23):2099-107.CrossrefGoogle Scholar

  • 393. Slade GD, Ghezzi EM, Heiss G, Beck JD, Riche E, Offenbacher S. Relationship between periodontal disease and C-reactive protein among adults in the Atherosclerosis Risk in Communities study. Arch Intern Med. 2003;163(10):1172-9.Google Scholar

  • 394. Beck JD, Offenbacher S. Relationships among clinical measures of periodontal disease and their associations with systemic markers. Ann Periodontol. 2002;7(1):79-89.CrossrefGoogle Scholar

  • 395. Glurich I, Grossi S, Albini B, Ho A, Shah R, Zeid M, et al. Systemic inflammation in cardiovascular and periodontal disease: comparative study. Clin Diagn Lab Immunol. 2002;9(2):425-32.Google Scholar

  • 396. Liu J, Wu Y, Ding Y, Meng S, Ge S, Deng H. Evaluation of serum levels of C-reactive protein and lipid profiles in patients with chronic periodontitis and/or coronary heart disease in an ethnic Han population. Quintessence Int. 2010;41(3):239-47.Google Scholar

  • 397. Malali E, Basar I, Emekli-Alturfan E, Elemek E, Oktay S, Ayan F, et al. Levels of C-reactive protein and protein C in periodontitis patients with and without cardiovascular disease. Pathophysiol Haemost Thromb. 2010;37(1):49-54.Google Scholar

  • 398. Persson GR, Pettersson T, Ohlsson O, Renvert S. Highsensitivity serum C-reactive protein levels in subjects with or without myocardial infarction or periodontitis. J Clin Periodontol. 2005;32(3):219-24.CrossrefGoogle Scholar

  • 399. Anand SS, Yusuf S. C-reactive protein is a bystander of cardiovascular disease. Eur Heart J. 2010;31(17):2092-6.CrossrefGoogle Scholar

  • 400. Ernst E. The role of fibrinogen as a cardiovascular risk factor. Atherosclerosis. 1993;100(1):1-12.Google Scholar

  • 401. Thompson S, Kienast J, Pyke S, Haverkate F, Van de loo J. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. N Engl J Med. 1995;332(10):635-41.Google Scholar

  • 402. Fibrinogen Studies Collaboration, Danesh J, Lewington S, Thompson SG, Lowe G, Collins R, Kostis J, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant metaanalysis. JAMA. 2005;Oct 12;294(14):1799-809.Google Scholar

  • 403. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon III RO, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499-511.Google Scholar

  • 404. Davalos D, Akassoglou K, editors. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 2012;Jan;34(1):43-62.Google Scholar

  • 405. Loscalzo J, Braunwald E. Tissue plasminogen activator. N Engl J Med. 1988;319(14):925-31.Google Scholar

  • 406. Mattila K, Rasi V, Nieminen M, Valtonen V, Kesaniemi A, Syrjala S, et al. von Willebrand factor antigen and dental infections. Thromb Res. 1989;56(2):325-9.Google Scholar

  • 407. Amabile N, Susini G, Pettenati‐Soubayroux I, Bonello L, Gil JM, Arques S, et al. Severity of periodontal disease correlates to inflammatory systemic status and independently predicts the presence and angiographic extent of stable coronary artery disease. J Intern Med. 2008;263(6):644-52.Google Scholar

  • 408. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482-94.Google Scholar

  • 409. Papapanagiotou D, Nicu EA, Bizzarro S, Gerdes VE, Meijers JC, Nieuwland R, et al. Periodontitis is associated with platelet activation. Atherosclerosis. 2009;202(2):605-11.Google Scholar

  • 410. Fredman G, Oh SF, Ayilavarapu S, Hasturk H, Serhan CN, Van Dyke TE. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1. PLoS One. 2011;6(9):e24422.Google Scholar

  • 411. Lupu F, Bergonzelli GE, Heim DA, Cousin E, Genton CY, Bachmann F, et al. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries. Arterioscler Thromb. 1993;13(7):1090-100.CrossrefGoogle Scholar

  • 412. Montebugnoli L, Servidio D, Miaton RA, Prati C, Tricoci P, Melloni C, et al. Periodontal health improves systemic inflammatory and haemostatic status in subjects with coronary heart disease. J Clin Periodontol. 2005;32(2):188-92.CrossrefGoogle Scholar

  • 413. Bretz WA, Weyant RJ, Corby PM, Ren D, Weissfeld L, Kritchevsky SB, et al. Systemic inflammatory markers, periodontal diseases, and periodontal infections in an elderly population. J Am Geriatr Soc. 2005;53(9):1532-7.CrossrefGoogle Scholar

  • 414. Bizzarro S, Van Der Velden U, Ten Heggeler JM, Leivadaros E, Hoek FJ, Gerdes VE, et al. Periodontitis is characterized by elevated PAI‐1 activity. J Clin Periodontol. 2007;34(7):574-80.CrossrefGoogle Scholar

  • 415. Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2(3):185.Google Scholar

  • 416. Lamb DJ, El-Sankary W, Ferns GA. Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis. 2003;167(2):177-85.Google Scholar

  • 417. Maeda H, Miyamoto M, Hongyo H, Nagai A, Kurihara H, Murayama Y. Heat shock protein 60 (GroEL) from Porphyromonas gingivalis: molecular cloning and sequence analysis of its gene and purification of the recombinant protein. FEMS Microbiol Lett. 1994;119(1‐2):129-35.Google Scholar

  • 418. Vayssier C, Mayrand D, Grenier D. Detection of stress proteins in Porphyromonas gingivalis and other oral bacteria by Western immunoblotting analysis. FEMS Microbiol Lett. 1994;121(3):303-7.Google Scholar

  • 419. Lu B, McBride B. Stress response of Porphyromonas gingivalis. Oral Microbiol Immunol. 1994;9(3):166-73.Google Scholar

  • 420. Rizzo M, Cappello F, Marfil R, Nibali L, Gammazza AM, Rappa F, et al. Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones. 2012;17(3):399-407.CrossrefGoogle Scholar

  • 421. Ueki K, Tabeta K, Yoshie H, Yamazaki K. Self‐heat shock protein 60 induces tumour necrosis factor‐α in monocyte‐derived macrophage: possible role in chronic inflammatory periodontal disease. Clin Exp Immunol. 2002;127(1):72-7.Google Scholar

  • 422. Choi J-I, Chung S-W, Kang H-S, Rhim B, Park Y-M, Kim U-S, et al. Epitope mapping of Porphyromonas gingivalis heatshock protein and human heat-shock protein in human atherosclerosis. J Dent Res. 2004;83(12):936-40.Google Scholar

  • 423. Hinode D, Nakamura R, Grenier D, Mayrand D. Cross‐reactivity of specific antibodies directed to heat shock proteins from periodontopathogenic bacteria of human origin. Oral Microbiol Immunol. 1998;13(1):55-8.Google Scholar

  • 424. Yamazaki K, Ohsawa Y, Itoh H, Ueki K, Tabeta K, Oda T, et al. T‐cell clonality to Porphyromonas gingivalis and human heat shock protein 60s in patients with atherosclerosis and periodontitis. Oral Microbiol Immunol. 2004;19(3):160-7.Google Scholar

  • 425. Ford P, Gemmell E, Walker P, West M, Cullinan M, Seymour G. Characterization of heat shock protein-specific T cells in atherosclerosis. Clin Diagn Lab Immunol. 2005;12(2):259-67.Google Scholar

  • 426. Vaarala O, Mänttäri M, Manninen V, Tenkanen L, Puurunen M, Aho K, et al. Anti-cardiolipin antibodies and risk of myocardial infarction in a prospective cohort of middle-aged men. Circulation. 1995;91(1):23-7.Google Scholar

  • 427. Wu R, Nityanand S, Berglund L, Lithell H, Holm Gr, Lefvert AK. Antibodies against cardiolipin and oxidatively modified LDL in 50-year-old men predict myocardial infarction. Arterioscler Thromb Vasc Biol. 1997;17(11):3159-63.CrossrefGoogle Scholar

  • 428. Toshima S-i, Hasegawa A, Kurabayashi M, Itabe H, Takano T, Sugano J, et al. Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease. Arterioscler Thromb Vasc Biol. 2000;20(10):2243-7.Google Scholar

  • 429. Schenkein HA, Berry CR, Burmeister JA, Brooks CN, Best AM, Tew JG. Locally produced anti-phosphorylcholine and anti-oxidized low-density lipoprotein antibodies in gingival crevicular fluid from aggressive periodontitis patients. J Periodontol. 2004;75(1):146-53.Google Scholar

  • 430. Wang D, Nagasawa T, Chen Y, Ushida Y, Kobayashi H, Takeuchi Y, et al. Molecular mimicry of Aggregatibacter actinomycetemcomitans with β2 glycoprotein I. Oral Microbiol Immunol. 2008;23(5):401-5.Google Scholar

  • 431. Turunen SP, Kummu O, Harila K, Veneskoski M, Soliymani R, Baumann M, et al. Recognition of Porphyromonas gingivalis gingipain epitopes by natural IgM binding to malondialdehyde modified low-density lipoprotein. PLoS One. 2012;7(4):e34910.Google Scholar

  • 432. Schenkein H, Berry C, Burmeister J, Brooks C, Barbour S, Best A, et al. Anti-cardiolipin antibodies in sera from patients with periodontitis. J Dent Res. 2003;82(11):919-22.Google Scholar

  • 433. Turkoğlu O, Barış N, Kutukculer N, Şenarslan O, Guneri S, Atilla G. Evaluation of serum anti‐cardiolipin and oxidized lowdensity lipoprotein levels in chronic periodontitis patients with essential hypertension. J Periodontol. 2008;79(2):332-40.Google Scholar

  • 434. Monteiro AM, Jardini MA, Alves S, Giampaoli V, Aubin EC, Figueiredo Neto AM, et al. Cardiovascular disease parameters in periodontitis. J Periodontol. 2009;80(3):378-88.Google Scholar

  • 435. Pussinen PJ, Vilkuna-Rautiainen T, Alfthan G, Palosuo T, Jauhiainen M, Sundvall J, et al. Severe periodontitis enhances macrophage activation via increased serum lipopolysaccharide. Arterioscler Thromb Vasc Biol. 2004;24(11):2174-80.CrossrefGoogle Scholar

  • 436. Gunupati S, Chava VK, Krishna BP. Effect of phase I periodontal therapy on anti‐cardiolipin antibodies in patients with acute myocardial infarction associated with chronic periodontitis. J Periodontol. 2011;82(12):1657-64.Google Scholar

  • 437. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837-47.Google Scholar

  • 438. Nibali L, D’aiuto F, Griffiths G, Patel K, Suvan J, Tonetti MS. Severe periodontitis is associated with systemic inflammation and a dysmetabolic status: a case-control study. J Clin Periodontol. 2007;34(11):931-7.CrossrefGoogle Scholar

  • 439. Katz J, Chaushu G, Sharabi Y. On the association between hypercholesterolemia, cardiovascular disease and severe periodontal disease. J Clin Periodontol. 2001;28(9):865-8.Google Scholar

  • 440. Losche W, Karapetow F, Pohl A, Pohl C, Kocher T. Plasma lipid and blood glucose levels in patients with destructive periodontal disease. J Clin Periodontol. 2000;27(8):537-41.Google Scholar

  • 441. Rufail M, Schenkein H, Koertge T, Best A, Barbour S, Tew J, et al. Atherogenic lipoprotein parameters in patients with aggressive periodontitis. J Periodontal Res. 2007;42(6):495-502.CrossrefGoogle Scholar

  • 442. Koba S, Hirano T. Dyslipidemia and atherosclerosis. Nihon Rinsho. 2011;69(1):138-43.Google Scholar

  • 443. Oz SG, Fentoglu O, Kilicarslan A, Guven GS, Tanrtover MD, Aykac Y, et al. Beneficial effects of periodontal treatment on metabolic control of hypercholesterolemia. South Med J. 2007;100(7):686-91.Google Scholar

  • 444. Duan J, Ou-Yang X, Zhou Y. Effect of periodontal initial therapy on the serum level of lipid in the patients with both periodontitis and hyperlipidemia. Beijing Da Xue Xue Bao Yi Xue Ban. 2009;41(1):36-9.Google Scholar

  • 445. Howard BV. Insulin, insulin resistance, and dyslipidemia. Ann N Y Acad Sci. 1993;683:1-8.Google Scholar

  • 446. Salvi GE, Yalda B, Collins JG, Jones BH, Smith FW, Arnold RR, et al. Inflammatory mediator response as a potential risk marker for periodontal diseases in insulin‐dependent diabetes mellitus patients. J Periodontol. 1997;68(2):127-35.Google Scholar

  • 447. Miyazawa H, Tabeta K, Miyauchi S, Aoki-Nonaka Y, Domon H, Honda T, et al. Effect of Porphyromonas gingivalis infection on post-transcriptional regulation of the low-density lipoprotein receptor in mice. Lipids Health Dis. 2012;11:121.CrossrefGoogle Scholar

  • 448. Ishikawa M, Yoshida K, Okamura H, Ochiai K, Takamura H, Fujiwara N, et al. Oral Porphyromonas gingivalis translocates to the liver and regulates hepatic glycogen synthesis through the Akt/GSK-3beta signaling pathway. Biochim Biophys Acta. 2013;1832(12):2035-43.Google Scholar

  • 449. Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest. 1994;94(4):1543-9.Google Scholar

  • 450. Arimatsu K, Yamada H, Miyazawa H, Minagawa T, Nakajima M, Ryder MI, et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828.Google Scholar

  • 451. Palomaki GE, Melillo S, Bradley LA. Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA. 2010;303(7):648-56.Google Scholar

  • 452. McPherson R, Visel A, Zhu Y, May D, McPherson R, Pertsemlidis A, et al. Chromosome 9p21 and coronary artery disease. N Engl J Med. 2010;362(18):1736.Google Scholar

  • 453. Schunkert H, Gotz A, Braund P, McGinnis R, Tregouet DA, Mangino M, et al. Repeated replication and a prospective metaanalysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008;117(13):1675-84.Google Scholar

  • 454. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333-8.Google Scholar

  • 455. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443-53.Google Scholar

  • 456. Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661.Google Scholar

  • 457. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007.Google Scholar

  • 458. Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF. Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke. 2008;39(5):1586-9.CrossrefGoogle Scholar

  • 459. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007.Google Scholar

  • 460. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336-41.Google Scholar

  • 461. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331-6.Google Scholar

  • 462. Schaefer AS, Richter GM, Groessner-Schreiber B, Noack B, Nothnagel M, El Mokhtari N-E, et al. Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis. PLoS genetics. 2009;5(2):e1000378.Google Scholar

  • 463. Ernst FD, Uhr K, Teumer A, Fanghanel J, Schulz S, Noack B, et al. Replication of the association of chromosomal region 9p21. 3 with generalized aggressive periodontitis (gAgP) using an independent case-control cohort. BMC Med Genet. 2010;11(1):119.Google Scholar

  • 464. Schaefer AS, Richter GM, Dommisch H, Reinartz M, Nothnagel M, Noack B, et al. CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection. J Med Genet. 2011;Jan;48(1):38-47.CrossrefGoogle Scholar

  • 465. Eggesbo JB, Hjermann I, Hostmark AT, Kierulf P. LPS induced release of IL-1 beta, IL-6, IL-8 and TNF-alpha in EDTA or heparin anticoagulated whole blood from persons with high or low levels of serum HDL. Cytokine. 1996;8(2):152-60.Google Scholar

  • 466. Salvi GE, Yalda B, Collins JG, Jones BH, Smith FW, Arnold RR, et al. Inflammatory mediator response as a potential risk marker for periodontal diseases in insulin-dependent diabetes mellitus patients. J Periodontol. 1997;68(2):127-35.Google Scholar

  • 467. Stashenko P, Fujiyoshi P, Obernesser MS, Prostak L, Haffajee AD, Socransky SS. Levels of interleukin 1 beta in tissue from sites of active periodontal disease. J Clin Periodontol. 1991;18(7):548-54.CrossrefGoogle Scholar

  • 468. Ciampolillo A, Guastamacchia E, Caragiulo L, Lollino G, De Robertis O, Lattanzi V, et al. In vitro secretion of interleukin-1 beta and interferon-gamma by peripheral blood lymphomononuclear cells in diabetic patients. Diabetes Res Clin Pract. 1993;21(2-3):87-93.CrossrefGoogle Scholar

  • 469. Zambon JJ, Reynolds H, Fisher JG, Shlossman M, Dunford R, Genco RJ. Microbiological and immunological studies of adult periodontitis in patients with noninsulin-dependent diabetes mellitus. J Periodontol. 1988;59(1):23-31.Google Scholar

  • 470. Iacopino AM. Diabetic periodontitis: possible lipid-induced defect in tissue repair through alteration of macrophage phenotype and function. Oral Dis. 1995;1(4):214-29.Google Scholar

  • 471. Cutler CW, Machen RL, Jotwani R, Iacopino AM. Heightened gingival inflammation and attachment loss in type 2 diabetics with hyperlipidemia. J Periodontol. 1999;70(11):1313-21.Google Scholar

  • 472. Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol. 2011;7(12):738-48.Google Scholar

  • 473. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813-23.Google Scholar

  • 474. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793-801.Google Scholar

  • 475. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79(8 Suppl):1527-34.Google Scholar

  • 476. Abbatecola AM, Ferrucci L, Grella R, Bandinelli S, Bonafe M, Barbieri M, et al. Diverse effect of inflammatory markers on insulin resistance and insulin-resistance syndrome in the elderly. J Am Geriatr Soc. 2004;52(3):399-404.Google Scholar

  • 477. Gupta A, Ten S, Anhalt H. Serum levels of soluble tumor necrosis factor-alpha receptor 2 are linked to insulin resistance and glucose intolerance in children J Pediatr Endocrinol Metab. 2005;18(1):75-82.CrossrefGoogle Scholar

  • 478. Engebretson S, Chertog R, Nichols A, Hey-Hadavi J, Celenti R, Grbic J. Plasma levels of tumour necrosis factor-alpha in patients with chronic periodontitis and type 2 diabetes. J Clin Periodontol. 2007;34(1):18-24.CrossrefGoogle Scholar

  • 479. Graves DT, Naguib G, Lu H, Leone C, Hsue H, Krall E. Inflammation is more persistent in type 1 diabetic mice. J Dent Res. 2005;84(4):324-8.Google Scholar

  • 480. Nishihara R, Sugano N, Takano M, Shimada T, Tanaka H, Oka S, et al. The effect of Porphyromonas gingivalis infection on cytokine levels in type 2 diabetic mice. J Periodontal Res. 2009;44(3):305-10.Google Scholar

  • 481. Naguib G, Al-Mashat H, Desta T, Graves DT. Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation. J Invest Dermatol. 2004;123(1):87-92.Google Scholar

  • 482. Lu H, Raptis M, Black E, Stan M, Amar S, Graves DT. Influence of diabetes on the exacerbation of an inflammatory response in cardiovascular tissue. Endocrinology. 2004;145(11):4934-9.Google Scholar

  • 483. Salvi GE, Kandylaki M, Troendle A, Persson GR, Lang NP. Experimental gingivitis in type 1 diabetics: a controlled clinical and microbiological study. J Clin Periodontol. 2005;32(3):310-6.Google Scholar

  • 484. Salvi GE, Beck JD, Offenbacher S. PGE2, IL-1 beta, and TNFalpha responses in diabetics as modifiers of periodontal disease expression. Ann Periodontol. 1998;3(1):40-50.Google Scholar

  • 485. Salvi GE, Collins JG, Yalda B, Arnold RR, Lang NP, Offenbacher S. Monocytic TNF alpha secretion patterns in IDDM patients with periodontal diseases. J Clin Periodontol. 1997;24(1):8-16.CrossrefGoogle Scholar

  • 486. Karima M, Kantarci A, Ohira T, Hasturk H, Jones VL, Nam BH, et al. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis. J Leukoc Biol. 2005;78(4):862-70.Google Scholar

  • 487. Salvi GE, Beck JD, Offenbacher S. PGE2, IL-1 β, and TNF-α responses in diabetics as modifiers of periodontal disease expression. Ann Periodontol. 1998;3(1):40-50.Google Scholar

  • 488. Takano M, Nishihara R, Sugano N, Matsumoto K, Yamada Y, Takane M, et al. The effect of systemic anti-tumor necrosis factor-alpha treatment on Porphyromonas gingivalis infection in type 2 diabetic mice. Arch Oral Biol. 2010;55(5):379-84.CrossrefGoogle Scholar

  • 489. Chang KM, Ryan ME, Golub LM, Ramamurthy NS, McNamara TF. Local and systemic factors in periodontal disease increase matrix-degrading enzyme activities in rat gingiva: effect of micocycline therapy. Res Commun Mol Pathol Pharmacol. 1996;91(3):303-18.Google Scholar

  • 490. Seppala B, Sorsa T, Ainamo J. Morphometric analysis of cellular and vascular changes in gingival connective tissue in long-term insulin-dependent diabetes. J Periodontol. 1997;68(12):1237-45.Google Scholar

  • 491. Schneir M, Imberman M, Ramamurthy N, Golub L. Streptozotocin-induced diabetes and the rat periodontium: decreased relative collagen production. Coll Relat Res. 1988;8(3):221-32.Google Scholar

  • 492. Claudino M, Ceolin DS, Alberti S, Cestari TM, Spadella CT, Rubira-Bullen IR, et al. Alloxan-induced diabetes triggers the development of periodontal disease in rats. PloS one. 2007;2(12):e1320.Google Scholar

  • 493. Kumar MS, Vamsi G, Sripriya R, Sehgal PK. Expression of matrix metalloproteinases (MMP-8 and -9) in chronic periodontitis patients with and without diabetes mellitus. J Periodontol. 2006;77(11):1803-8.Google Scholar

  • 494. Santos VR, Lima JA, Goncalves TE, Bastos MF, Figueiredo LC, Shibli JA, et al. Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes. J Periodontol. 2010;81(10):1455-65.Google Scholar

  • 495. Duarte PM, Neto JB, Casati MZ, Sallum EA, Nociti FH, Jr. Diabetes modulates gene expression in the gingival tissues of patients with chronic periodontitis. Oral Dis. 2007;13(6):594-9.Google Scholar

  • 496. Mahamed DA, Marleau A, Alnaeeli M, Singh B, Zhang X, Penninger JM, et al. G(-) anaerobes-reactive CD4+ T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes. 2005;54(5):1477-86.CrossrefGoogle Scholar

  • 497. He H, Liu R, Desta T, Leone C, Gerstenfeld LC, Graves DT. Diabetes causes decreased osteoclastogenesis, reduced bone formation, and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology. 2004;145(1):447-52.Google Scholar

  • 498. Liu R, Bal HS, Desta T, Krothapalli N, Alyassi M, Luan Q, et al. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res. 2006;85(6):510-4.Google Scholar

  • 499. Liu R, Desta T, He H, Graves DT. Diabetes alters the response to bacteria by enhancing fibroblast apoptosis. Endocrinology. 2004;145(6):2997-3003.Google Scholar

  • 500. Schmidt AM, Weidman E, Lalla E, Yan SD, Hori O, Cao R, et al. Advanced glycation endproducts (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. J Periodontal Res. 1996;31(7):508-15.Google Scholar

  • 501. Katz J, Bhattacharyya I, Farkhondeh-Kish F, Perez FM, Caudle RM, Heft MW. Expression of the receptor of advanced glycation end products in gingival tissues of type 2 diabetes patients with chronic periodontal disease: a study utilizing immunohistochemistry and RT-PCR. J Clin Periodontol. 2005;32(1):40-4.Google Scholar

  • 502. Takeda M, Ojima M, Yoshioka H, Inaba H, Kogo M, Shizukuishi S, et al. Relationship of serum advanced glycation end products with deterioration of periodontitis in type 2 diabetes patients. J Periodontol. 2006;77(1):15-20.Google Scholar

  • 503. Murillo J, Wang Y, Xu X, Klebe RJ, Chen Z, Zardeneta G, et al. Advanced glycation of type I collagen and fibronectin modifies periodontal cell behavior. J Periodontol. 2008;79(11):2190-9.Google Scholar

  • 504. Ren L, Fu Y, Deng Y, Qi L, Jin L. Advanced glycation end products inhibit the expression of collagens type I and III by human gingival fibroblasts. J Periodontol. 2009;80(7):1166-73.Google Scholar

  • 505. Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang B, et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun. 2006;340(4):1091-7.Google Scholar

  • 506. Yoshida T, Flegler A, Kozlov A, Stern PH. Direct inhibitory and indirect stimulatory effects of RAGE ligand S100 on sRANKLinduced osteoclastogenesis. J Cell Biochem. 2009;107(5):917-25.Google Scholar

  • 507. Lalla E, Lamster IB, Feit M, Huang L, Schmidt AM. A murine model of accelerated periodontal disease in diabetes. J Periodontal Res. 1998;33(7):387-99.Google Scholar

  • 508. Lalla E, Lamster IB, Feit M, Huang L, Spessot A, Qu W, et al. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. J Clin Invest. 2000;105(8):1117-24.Google Scholar

  • 509. Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG, et al. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. The Am J Pathol. 2001;159(2):513-25.Google Scholar

  • 510. Santana RB, Xu L, Chase HB, Amar S, Graves DT, Trackman PC. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes. 2003;52(6):1502-10.Google Scholar

  • 511. Lalla E, Lamster IB, Schmidt AM. Enhanced interaction of advanced glycation end products with their cellular receptor RAGE: implications for the pathogenesis of accelerated periodontal disease in diabetes. Ann Periodontol. 1998;3(1):13-9.Google Scholar

  • 512. Genco RJ, Grossi SG, Ho A, Nishimura F, Murayama Y. A proposed model linking inflammation to obesity, diabetes, and periodontal infections. J Periodontol. 2005;76:2075-84.Google Scholar

  • 513. Margetic S, Gazzola C, Pegg G, Hill R. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord. 2002;26(11):1407.Google Scholar

  • 514. Johnson R, Serio F. Leptin within healthy and diseased human gingiva. J Periodontol. 2001;72(9):1254-7.Google Scholar

  • 515. Karthikeyan B, Pradeep A. Leptin levels in gingival crevicular fluid in periodontal health and disease. J Periodontal Res. 2007;42(4):300-4.CrossrefGoogle Scholar

  • 516. Karthikeyan B, Pradeep A. Gingival crevicular fluid and serum leptin: their relationship to periodontal health and disease. J Clin Periodontol. 2007;34(6):467-72.CrossrefGoogle Scholar

  • 517. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24(1):29-33.CrossrefGoogle Scholar

  • 518. Yamaguchi N, Kukita T, Li Y-J, Martinez Argueta JG, Saito T, Hanazawa S, et al. Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans. FEMS Immunol Med Microbiol. 2007;49(1):28-34.Google Scholar

  • 519. Iwamoto Y, Nishimura F, Soga Y, Takeuchi K, Kurihara M, Takashiba S, et al. Antimicrobial periodontal treatment decreases serum C-reactive protein, tumor necrosis factoralpha, but not adiponectin levels in patients with chronic periodontitis. J Periodontol. 2003;74(8):1231-6.Google Scholar

  • 520. Furugen R, Hayashida H, Yamaguchi N, Yoshihara A, Ogawa H, Miyazaki H, et al. The relationship between periodontal condition and serum levels of resistin and adiponectin in elderly Japanese. J Periodontal Res. 2008;43(5):556-62.CrossrefGoogle Scholar

  • 521. Saito T, Yamaguchi N, Shimazaki Y, Hayashida H, Yonemoto K, Doi Y, et al. Serum levels of resistin and adiponectin in women with periodontitis: the Hisayama study. J Dent Res. 2008;87(4):319-22.Google Scholar

  • 522. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005;174(9):5789-95.Google Scholar

  • 523. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307.Google Scholar

  • 524. Camera A, Hopps E, Caimi G. Diabetic microangiopathy: physiopathological, clinical and therapeutic aspects. Minerva Endocrinol. 2007;32(3):209-29.Google Scholar

  • 525. Di Filippo C, Verza M, Coppola L, Rossi F, D’Amico M, Marfella R. Insulin resistance and postprandial hyperglycemia the bad companions in natural history of diabetes: effects on health of vascular tree. Curr Diabetes Rev. 2007;3(4):268-73.Google Scholar

  • 526. Castelao JE, Gago-Dominguez M. Risk factors for cardiovascular disease in women: relationship to lipid peroxidation and oxidative stress. Med Hypotheses. 2008;71(1):39-44.Google Scholar

  • 527. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816-23.CrossrefGoogle Scholar

  • 528. Bullon P, Morillo J, Ramirez-Tortosa MC, Quiles J, Newman H, Battino M. Metabolic syndrome and periodontitis: is oxidative stress a common link? J Dent Res. 2009;88(6):503-18.Google Scholar

  • 529. D’Aiuto F, Nibali L, Parkar M, Patel K, Suvan J, Donos N. Oxidative stress, systemic inflammation, and severe periodontitis. J Dent Res. 2010;89(11):1241-6.Google Scholar

  • 530. Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000. 2007;43:160-232.Google Scholar

  • 531. Yamagishi S-i, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev. 2010;3(2):101-8.Google Scholar

  • 532. McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci. 2004;1032(1):1-7.Google Scholar

  • 533. Breivik T, Thrane PS, Murison R, Gjermo P. Emotional stress effects on immunity, gingivitis and periodontitis. Eur J Oral Sci. 1996;104(4):327-34.Google Scholar

  • 534. Warren KR, Postolache TT, Groer ME, Pinjari O, Kelly DL, Reynolds MA. Role of chronic stress and depression in periodontal diseases. Periodontol 2000. 2014;64(1):127-38.Google Scholar

  • 535. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31(9):464-8.Google Scholar

  • 536. Genco RJ, Ho AW, Kopman J, Grossi SG, Dunford RG, Tedesco LA. Models to evaluate the role of stress in periodontal disease. Ann Periodontol. 1998;3(1):288-302.CrossrefGoogle Scholar

  • 537. Williams T, Yarwood H. Effect of glucocorticosteroids on microvascular permeability. Am Rev Respir Dis. 1990;141(2 Pt 2):S39.Google Scholar

  • 538. Cupps TR, Fauci AS. Corticosteroid‐mediated immunoregulation in man. Immunol Rev. 1982;65(1):133-55.Google Scholar

  • 539. Schleimer RP, Freeland H, Peters S, Brown K, Derse C. An assessment of the effects of glucocorticoids on degranulation, chemotaxis, binding to vascular endothelium and formation of leukotriene B4 by purified human neutrophils. J Pharmacol Exp Ther. 1989;250(2):598-605.Google Scholar

  • 540. Johannsen A, Rylander G, Soder B, Marie A. Dental plaque, gingival inflammation, and elevated levels of interleukin‐6 and cortisol in gingival crevicular fluid from women with stress‐related depression and exhaustion. J Periodontol. 2006;77(8):1403-9.Google Scholar

  • 541. Johannsen A, Rydmark I, Soder B, Asberg M. Gingival inflammation, increased periodontal pocket depth and elevated interleukin‐6 in gingival crevicular fluid of depressed women on long‐term sick leave. J Periodontal Res. 2007;42(6):546-52.CrossrefGoogle Scholar

  • 542. Branco-de-Almeida LS, Franco GC, Castro ML, dos Santos JG, Anbinder AL, Cortelli SC, et al. Fluoxetine inhibits inflammatory response and bone loss in a rat model of ligature-induced periodontitis. J Periodontol. 2012;83(5):664-71.Google Scholar

  • 543. Fibiger W, Singer G, Miller AJ. Relationships between catecholamines in urine and physical and mental effort. Int J Psychophysiol. 1984;1(4):325-33.Google Scholar

  • 544. Dimsdale JE, Moss J. Plasma catecholamines in stress and exercise. JAMA. 1980;243(4):340-2.Google Scholar

  • 545. Ritchie CS, Kinane DF. Nutrition, inflammation, and periodontal disease. Nutrition. 2003;19(5):475.Google Scholar

  • 546. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327.Google Scholar

  • 547. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392.Google Scholar

  • 548. Bercik P, Park A, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132-9.Google Scholar

  • 549. Lyte M, Li W, Opitz N, Gaykema RP, Goehler LE. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav. 2006;89(3):350-7.Google Scholar

  • 550. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786.Google Scholar

  • 551. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017;82(7):472-87.Google Scholar

  • 552. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165-73.Google Scholar

  • 553. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047-52.Google Scholar

  • 554. Ait‐Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al. Probiotic gut effect prevents the chronic psychological stress‐induced brain activity abnormality in mice. Neurogastroenterol Motil. 2014;26(4):510-20.Google Scholar

  • 555. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755-64.Google Scholar

  • 556. Ong IM, Gonzalez JG, McIlwain SJ, Sawin EA, Schoen AJ, Adluru N, et al. Gut microbiome populations are associated with structure-specific changes in white matter architecture. Transl Psychiatry. 2018;8(1):6.Google Scholar

  • 557. Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol. 2013;6(1):39-51.Google Scholar

  • 558. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701.Google Scholar

  • 559. Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261-72.Google Scholar

  • 560. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481.CrossrefGoogle Scholar

  • 561. Hajishengallis G, Lamont RJ. Breaking bad: Manipulation of the host response by P orphyromonas gingivalis. Eur J Immunol. 2014;44(2):328-38.CrossrefGoogle Scholar

  • 562. Lee YL, Hu HY, Chou P, Chu D. Dental prophylaxis decreases the risk of acute myocardial infarction: a nationwide populationbased study in Taiwan. Clin Interv Aging. 2015;10:175-82.Google Scholar

  • 563. Peng CH, Yang YS, Chan KC, Kornelius E, Chiou JY, Huang CN. Periodontal Treatment and the Risks of Cardiovascular Disease in Patients with Type 2 Diabetes: A Retrospective Cohort Study. Intern Med. 2017;56(9):1015-21.Google Scholar

  • 564. Holmlund A, Lampa E, Lind L. Poor Response to Periodontal Treatment May Predict Future Cardiovascular Disease. J Dent Res. 2017;96(7):768-73.Google Scholar

  • 565. Freitas CO, Gomes-Filho IS, Naves RC, Nogueira Filho Gda R, Cruz SS, Santos CA, et al. Influence of periodontal therapy on C-reactive protein level: a systematic review and meta-analysis. J Appl Oral Sci. 2012;20(1):1-8.Google Scholar

  • 566. D’Aiuto F, Nibali L, Parkar M, Suvan J, Tonetti MS. Short-term effects of intensive periodontal therapy on serum inflammatory markers and cholesterol. J Dent Res. 2005;84(3):269-73.Google Scholar

  • 567. D’Aiuto F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am Heart J. 2006;151(5):977-84.Google Scholar

  • 568. Tonetti MS, D’Aiuto F, Nibali L, Donald A, Storry C, Parkar M, et al. Treatment of periodontitis and endothelial function. N Engl J Med. 2007;356(9):911-20.Google Scholar

  • 569. Knofler GU, Purschwitz RE, Eick S, Pfister W, Roedel M, Jentsch HF. Microbiologic findings 1 year after partial- and full-mouth scaling in the treatment of moderate chronic periodontitis. Quintessence Int. (Berlin, Germany : 1985). 2011;42(9):e107-17.Google Scholar

  • 570. Orlandi M, Suvan J, Petrie A, Donos N, Masi S, Hingorani A, et al. Association between periodontal disease and its treatment, flow-mediated dilatation and carotid intima-media thickness: a systematic review and meta-analysis. Atherosclerosis. 2014;236(1):39-46.Google Scholar

  • 571. Piconi S, Trabattoni D, Luraghi C, Perilli E, Borelli M, Pacei M, et al. Treatment of periodontal disease results in improvements in endothelial dysfunction and reduction of the carotid intimamedia thickness. FASEB J. 2009;23(4):1196-204.CrossrefGoogle Scholar

  • 572. Taylor BA, Tofler GH, Carey HM, Morel-Kopp MC, Philcox S, Carter TR, et al. Full-mouth tooth extraction lowers systemic inflammatory and thrombotic markers of cardiovascular risk. J Dent Res. 2006;85(1):74-8.Google Scholar

  • 573. Vidal F, Figueredo CM, Cordovil I, Fischer RG. Periodontal therapy reduces plasma levels of interleukin-6, C-reactive protein, and fibrinogen in patients with severe periodontitis and refractory arterial hypertension. J Periodontol. 2009;80(5):786-91.Google Scholar

  • 574. Hussain Bokhari SA, Khan AA, Tatakis DN, Azhar M, Hanif M, Izhar M. Non-surgical periodontal therapy lowers serum inflammatory markers: a pilot study. J Periodontol. 2009;80(10):1574-80.Google Scholar

  • 575. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. Leducq Transatlantic Network on Atherothrombosis. 2002;39(2):257-65.Google Scholar

  • 576. Seinost G, Wimmer G, Skerget M, Thaller E, Brodmann M, Gasser R, et al. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis. Am Heart J. 2005;149(6):1050-4.Google Scholar

  • 577. D’Aiuto F, Graziani F, Tete S, Gabriele M, Tonetti MS. Periodontitis: from local infection to systemic diseases. Int J Immunopathol Pharmacol. 2005;18(3 Suppl):1-11.Google Scholar

  • 578. Higashi Y, Goto C, Hidaka T, Soga J, Nakamura S, Fujii Y, et al. Oral infection-inflammatory pathway, periodontitis, is a risk factor for endothelial dysfunction in patients with coronary artery disease. Atherosclerosis. 2009;206(2):604-10.Google Scholar

  • 579. Vidal F, Cordovil I, Figueredo CM, Fischer RG. Non-surgical periodontal treatment reduces cardiovascular risk in refractory hypertensive patients: a pilot study. J Clin Periodontol. 2013;40(7):681-7.CrossrefGoogle Scholar

  • 580. Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J, et al. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23(2):233-46.Google Scholar

  • 581. Blum A, Kryuger K, Mashiach Eizenberg M, Tatour S, Vigder F, Laster Z, et al. Periodontal care may improve endothelial function. Eur J Intern Med. 2007;18(4):295-8.Google Scholar

  • 582. Iwamoto Y, Nishimura F, Soga Y, Takeuchi K, Kurihara M, Takashiba S, et al. Antimicrobial periodontal treatment decreases serum C-reactive protein, tumor necrosis factoralpha, but not adiponectin levels in patients with chronic periodontitis. J Periodontol. 2003;74(8):1231-6.Google Scholar

  • 583. D’Aiuto F, Ready D, Tonetti MS. Periodontal disease and C-reactive protein-associated cardiovascular risk. J Periodontal Res. 2004;39(4):236-41.CrossrefGoogle Scholar

  • 584. Nakajima T, Honda T, Domon H, Okui T, Kajita K, Ito H, et al. Periodontitis-associated up-regulation of systemic inflammatory mediator level may increase the risk of coronary heart disease. J Periodontal Res. 2010;45(1):116-22.CrossrefGoogle Scholar

  • 585. Yamazaki K, Honda T, Oda T, Ueki-Maruyama K, Nakajima T, Yoshie H, et al. Effect of periodontal treatment on the C-reactive protein and proinflammatory cytokine levels in Japanese periodontitis patients. J Periodontal Res. 2005;40(1):53-8.Google Scholar

  • 586. Ide M, McPartlin D, Coward PY, Crook M, Lumb P, Wilson RF. Effect of treatment of chronic periodontitis on levels of serum markers of acute-phase inflammatory and vascular responses. J Clin Periodontol. 2003;30(4):334-40.CrossrefGoogle Scholar

  • 587. Ioannidou E, Malekzadeh T, Dongari-Bagtzoglou A. Effect of periodontal treatment on serum C-reactive protein levels: a systematic review and meta-analysis. J Periodontol. 2006;77(10):1635-42.Google Scholar

  • 588. D’Aiuto F, Parkar M, Tonetti MS. Periodontal therapy: a novel acute inflammatory model. Inflamm Res. 2005;54(10):412-4.Google Scholar

  • 589. Minassian C, D’Aiuto F, Hingorani AD, Smeeth L. Invasive dental treatment and risk for vascular events: a self-controlled case series. Ann Intern Med. 2010;153(8):499-506.Google Scholar

  • 590. Merchant AT, Georgantopoulos P, Howe CJ, Virani SS, Morales DA, Haddock KS. Effect of Long-Term Periodontal Care on Hemoglobin A1c in Type 2 Diabetes. J Dent Res. 2016;95(4):408-15.Google Scholar

  • 591. Lalla E, Kaplan S, Yang J, Roth GA, Papapanou PN, Greenberg S. Effects of periodontal therapy on serum C-reactive protein, sE-selectin, and tumor necrosis factor-alpha secretion by peripheral blood-derived macrophages in diabetes. A pilot study. J Periodontal Res. 2007;42(3):274-82.CrossrefGoogle Scholar

  • 592. Sun WL, Chen LL, Zhang SZ, Ren YZ, Qin GM. Changes of adiponectin and inflammatory cytokines after periodontal intervention in type 2 diabetes patients with periodontitis. Arch Oral Biol. 2010;55(12):970-4.CrossrefGoogle Scholar

  • 593. Correa FO, Goncalves D, Figueredo CM, Bastos AS, Gustafsson A, Orrico SR. Effect of periodontal treatment on metabolic control, systemic inflammation and cytokines in patients with type 2 diabetes. J Clin Periodontol. 2010;37(1):53-8.Google Scholar

  • 594. Artese HP, Foz AM, Rabelo Mde S, Gomes GH, Orlandi M, Suvan J, et al. Periodontal therapy and systemic inflammation in type 2 diabetes mellitus: a meta-analysis. PLoS One. 2015;10(5):e0128344.Google Scholar

  • 595. Katagiri S, Nitta H, Nagasawa T, Uchimura I, Izumiyama H, Inagaki K, et al. Multi-center intervention study on glycohemoglobin (HbA1c) and serum, high-sensitivity CRP (hs- CRP) after local anti-infectious periodontal treatment in type 2 diabetic patients with periodontal disease. Diabetes Res Clin Pract. 2009;83(3):308-15.Google Scholar

  • 596. O’Connell PA, Taba M, Nomizo A, Foss Freitas MC, Suaid FA, Uyemura SA, et al. Effects of periodontal therapy on glycemic control and inflammatory markers. J Periodontol. 2008;79(5):774-83.Google Scholar

  • 597. Matsumoto S, Ogawa H, Soda S, Hirayama S, Amarasena N, Aizawa Y, et al. Effect of antimicrobial periodontal treatment and maintenance on serum adiponectin in type 2 diabetes mellitus. J Clin Periodontol. 2009;36(2):142-8.Google Scholar

  • 598. Teeuw WJ, Gerdes VE, Loos BG. Effect of periodontal treatment on glycemic control of diabetic patients: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):421-7.Google Scholar

  • 599. Offenbacher S, Beck JD, Moss K, Mendoza L, Paquette DW, Barrow DA, et al. Results from the Periodontitis and Vascular Events (PAVE) Study: a pilot multicentered, randomized, controlled trial to study effects of periodontal therapy in a secondary prevention model of cardiovascular disease. J Periodontol. 2009;80(2):190-201.Google Scholar

  • 600. Badersten A, Nilveus R, Egelberg J. Effect of nonsurgical periodontal therapy. I. Moderately advanced periodontitis. J Clin Periodontol. 1981;8(1):57-72.CrossrefGoogle Scholar

  • 601. Lowenguth RA, Greenstein G. Clinical and microbiological response to nonsurgical mechanical periodontal therapy. Periodontol 2000. 1995;9:14-22.Google Scholar

  • 602. Al-Mubarak S, Ciancio S, Aljada A, Mohanty P, Ross C, Dandona P. Comparative evaluation of adjunctive oral irrigation in diabetics. J Clin Periodontol. 2002;29(4):295-300.Google Scholar

  • 603. Campus G, Salem A, Sacco G, Maida C, Cagetti MG, Tonolo G. Clinical effects of mechanical periodontal therapy in type 2 diabetic patients. Diabetes Res Clin Pract. 2007;75(3):368-9.Google Scholar

  • 604. Stewart JE, Wager KA, Friedlander AH, Zadeh HH. The effect of periodontal treatment on glycemic control in patients with type 2 diabetes mellitus. J Clin Periodontol. 2001;28(4):306-10.Google Scholar

  • 605. Ozcelik O, Haytac MC, Seydaoglu G. Immediate post-operative effects of different periodontal treatment modalities on oral health-related quality of life: a randomized clinical trial. J Clin Periodontol. 2007;34(9):788-96.CrossrefGoogle Scholar

  • 606. Tonetti MS, Lang NP, Cortellini P, Suvan JE, Adriaens P, Dubravec D, et al. Enamel matrix proteins in the regenerative therapy of deep intrabony defects: A multicentre randomized controlled clinical trial. J Clin Periodontol. 2002;29(4):317-25.CrossrefGoogle Scholar

  • 607. Mahendra L, Mahendra J, Borra SK, Nagarajan A. Estimation of salivary neopterin in chronic periodontitis. Indian J Dent Res. 2014;25(6):794.Google Scholar

  • 608. Arjunkumar R, Sudhakar U, Jayakumar P, Arunachalam L, Suresh S, Virupapuram P. Comparative analysis of gingival crevicular fluid neopterin levels in health and periodontal disease: a biochemical study. Indian J Dent Res. 2013;24(5):582.Google Scholar

  • 609. Fenol A, Swetha V, Krishnan S, Perayil J, Vyloppillil R, Bhaskar A, et al. Correlation of salivary neopterin and plasma fibrinogen levels in patients with chronic periodontitis and/or type 2 diabetes mellitus. Pteridines. 2017;28(3-4):177-83.CrossrefGoogle Scholar

  • 610. Bodur A, Baydar T, Ozmeric N, Engin AB, Uraz A, Eren K, et al. Neopterin profile to evaluate the effectiveness of treatment in aggressive periodontitis. Pteridines. 2003;14(3):77-81.CrossrefGoogle Scholar

  • 611. Atchison KA, Dolan TA. Development of the geriatric oral health assessment index. J Dent Educ. 1990;54(11):680-7.Google Scholar

  • 612. Gooch B, Dolan T, Bourque L. Correlates of self-reported dental health status upon enrollment in the Rand Health Insurance Experiment. J Dent Educ. 1989;53(11):629-37.Google Scholar

  • 613. Rosenberg D, Kaplan S, Senie R, Badner V. Relationships among dental functional status, clinical dental measures, and generic health measures. J Dent Educ. 1988;52(11):653-7.Google Scholar

  • 614. Slade GD, Spencer AJ. Development and evaluation of the oral health impact profile. Community Dent Health. 1994;11(1):3-11.Google Scholar

  • 615. Nagarajan S, Chandra R. Perception of oral health related quality of life (OHQoL-UK) among periodontal risk patients before and after periodontal. Community Dent Health. 2012;29:90-4.Google Scholar

  • 616. Vergnes JN. Hemoglobin A1c levels among patients with diabetes receiving nonsurgical periodontal treatment. JAMA. 2014;311(18):1920-1.Google Scholar

  • 617. Mizuno H, Ekuni D, Maruyama T, Kataoka K, Yoneda T, Fukuhara D, et al. The effects of non-surgical periodontal treatment on glycemic control, oxidative stress balance and quality of life in patients with type 2 diabetes: A randomized clinical trial. PLoS One. 2017;12(11):e0188171.Google Scholar

  • 618. Marcus SE, Drury TF, Brown LJ, Zion GR. Tooth retention and tooth loss in the permanent dentition of adults: United States, 1988-1991. J Dent Res. 1996;75 Spec No:684-95.Google Scholar

  • 619. Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK. Bacteremia associated with toothbrushing and dental extraction. Circulation. 2008;117(24):3118-25.Google Scholar

  • 620. Forner L, Larsen T, Kilian M, Holmstrup P. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol. 2006;33(6):401-7.CrossrefGoogle Scholar

  • 621. Kinane DF, Riggio MP, Walker KF, MacKenzie D, Shearer B. Bacteraemia following periodontal procedures. J Clin Periodontol. 2005;32(7):708-13.CrossrefGoogle Scholar

  • 622. Geerts SO, Nys M, De MP, Charpentier J, Albert A, Legrand V, et al. Systemic release of endotoxins induced by gentle mastication: association with periodontitis severity. J Periodontol. 2002;73(1):73-8.Google Scholar

  • 623. Merchant A, Pitiphat W, Douglass CW, Crohin C, Joshipura K. Oral hygiene practices and periodontitis in health care professionals. J Periodontol. 2002;73(5):531-5.Google Scholar

  • 624. Baelum V, Luan WM, Chen X, Fejerskov O. A 10-year study of the progression of destructive periodontal disease in adult and elderly Chinese. J Periodontol. 1997;68(11):1033-42.Google Scholar

  • 625. Anerud A, Loe H, Boysen H. The natural history and clinical course of calculus formation in man. J Clin Periodontol. 1991;18(3):160-70.Google Scholar

  • 626. American Academy of Periodontology-Research, Science, and Therapy Committee; American Academy of Pediatric Dentistry. Treatment of plaque-induced gingivitis, chronic periodontitis, and other clinical conditions. Pediatr Dent. 2005;27(7 Suppl):202-11.Google Scholar

  • 627. Califano JV. Position paper: periodontal diseases of children and adolescents. J Periodontol. 2003;74(11):1696-704.Google Scholar

  • 628. Lal S, Cheng B, Kaplan S, Softness B, Greenberg E, Goland RS, et al. Gingival bleeding in 6- to 13-year-old children with diabetes mellitus. Pediatr Dent. 2007;29(5):426-30.Google Scholar

  • 629. Chalmers JM, King PL, Spencer AJ, Wright FA, Carter KD. The oral health assessment tool--validity and reliability. Aust Dent J. 2005;50(3):191-9.CrossrefGoogle Scholar

  • 630. Griffiths J, Jones V, Leeman I, Lewis D, Patel K, Wilson K, et al. Oral Health Care for People with Mental Health Problems Guidelines and Recommendations: Report of BSDH Working Group. 2000 [updated January, 2000]. Available from: https://www.academia.edu/7695445/Oral_Health_Care_for_People_with_Mental_Health_Problems_Guidelines_and_Recommendation.Google Scholar

  • 631. Chalmers J, Spencer A, Carter K, King P, Wright C. Caring for oral health in Australian residential care. 2009 [updated 2009]. Available from: https://www.adelaide.edu.au/arcpoh/downloads/publications/reports/dental-statistics-researchseries/2009-2010-residential-care.pdf.Google Scholar

  • 632. Machtei EE, Hausmann E, Dunford R, Grossi S, Ho A, Davis G, et al. Longitudinal study of predictive factors for periodontal disease and tooth loss. J Clin Periodontol. 1999;26(6):374-80.CrossrefGoogle Scholar

  • 633. Merchant AT. Will periodontal treatment prevent heart disease and stroke? J Evid Based Dent Pract. 2012;12(4):212-5.Google Scholar

  • 634. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66(5):688.Google Scholar

  • 635. Hernan MA, Hernandez-Diaz S, Robins JM. Randomized trials analyzed as observational studies. Ann Intern Med. 2013;159(8):560-2.Google Scholar

  • 636. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550-60.CrossrefGoogle Scholar

  • 637. Robins JM. Marginal structural models versus structural nested models as tools for causal inference. In: Statistical Models in Epidemiology, the Environment, and Clinical Trials. The IMA Volumes in Mathematics and its Applications, vol 116: Springer. New York, NY; 2000.Google Scholar

  • 638. Suarez D, Borras R, Basagana X. Differences between marginal structural models and conventional models in their exposure effect estimates: a systematic review. Epidemiology. 2011;22(4):586-8.Google Scholar

About the article

Received: 2018-09-13

Accepted: 2018-10-10

Published Online: 2018-11-13

Published in Print: 2018-11-01


Citation Information: Pteridines, Volume 29, Issue 1, Pages 124–163, ISSN (Online) 2195-4720, ISSN (Print) 0933-4807, DOI: https://doi.org/10.1515/pteridines-2018-0013.

Export Citation

© 2018 Teodor T. Postolache, et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in