Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Official Journal of the International Society of Pteridinology

Editor-in-Chief: Fuchs, Dietmar

IMPACT FACTOR 2018: 0.531

CiteScore 2018: 0.67

SCImago Journal Rank (SJR) 2018: 0.195
Source Normalized Impact per Paper (SNIP) 2018: 0.318

ICV 2018: 145.86

Open Access
See all formats and pricing
More options …
Volume 30, Issue 1


Riboflavin - properties, occurrence and its use in medicine

Małgorzata Szczuko
  • Corresponding author
  • Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Ziętek
  • Clinic of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Danuta Kulpa
  • Department of Genetics, Plant Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teresa Seidler
Published Online: 2019-03-20 | DOI: https://doi.org/10.1515/pteridines-2019-0004


Riboflavin is built on an isoalloxazin ring, which contains three sixcarbon rings: benzoic, pyrazine and pyrimidine. Riboflavin is synthesized by some bacteria, but among humans and animals, the only source of flavin coenzymes (FAD, FMN) is exogenous riboflavin. Riboflavin transport in enterocytes takes place via three translocators encoded by the SLC52 gene. Deficiency of dietary riboflavin has wide ranging implications for the efficacy of other vitamins, the mechanism of cellular respiration, lactic acid metabolism, hemoglobin, nucleotides and amino acid synthesis. In studies it was found that, pharmacologic daily doses (100 mg) have the potential to react with light, which can have adverse cellular effects. Extrene caution should be exercised when using riboflavin as phototherapy in premature newborns. At the cellular level, riboflavin deficiency leads to increased oxidative stress and causes disorders in the glutathione recycling process. Risk factors for developing riboflavin deficinecy include pregnancy, malnutrition (including anorexia and other eating disorders, vegitarianism, veganism and alcoholism. Furthermore, elderly people and atheletes are also at risk of developing this deficiency. Widespread use of riboflavin in medicine, cancer therapy, treatment of neurodegenerative diseases, corneal ectasia and viral infections has resulted in the recent increased interest in this flavina.

Keywords: ribovlavin; dietary supply; deficiency; application; properties


  • 1. Karthikeyan S, Zhou Q, Mseeh F, Grishin NV, Osterman AL, Zhang H. Crystal structure of human riboflavin kinase reveals a β barrel fold and a novel active site Arch. Elsevier. 2003;11:265–273.Google Scholar

  • 2. Moszczyński P, Pyć R. Biochemia witamin. PWN, Warszawa, Łódź. 1999.Google Scholar

  • 3. Murray RK, Granner DK, Mayes PA, Rodwell VW. Biochemia Harpera. Wydawnictwo Lekarskie PZWL, Warszawa 2006.Google Scholar

  • 4. Yuasa H, Hirobe M, Tomei S, Watanabe J. Carrier-mediated transport of riboflavin in the rat colon. Biopharmaceutics & Drug Disposition. 2000;21(2):77-82.CrossrefGoogle Scholar

  • 5. Tutino V, Defrancesco ML, Tolomeo M, DE Nunzio V, Lorusso D, Paleni D, et al. The expression of riboflavin transporters in human colorectal cancer. Anticancer Res. 2018;38(5):2659-2667.PubMedGoogle Scholar

  • 6. Jacger B, Bosch AM. Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. J Inherit Metab Dis. 2016;39(4):559-64. doi: 10.1007/s10545-016-9924-2. Epub 2016 Mar 14.CrossrefGoogle Scholar

  • 7. Karande AA, Sridhar L, Gopinath K.S, Adiga PR. Riboflavin carrier protein: A serum and tissue marker for breast carcinoma. Int. J. Cancer. 2001;95(5):277-281.Google Scholar

  • 8. Lee SS, McCormik DB.Thyroid hormone regulation of flavocoenzyme biosynthesis. Arch. Biochem. Biophys. 1985;237:197-201.Google Scholar

  • 9. Skripkо VD, Pasko AJ, Kovalenko AL, Zaplutanov VA. Cytoflavin rationale for the use in treatment of patients with postsurgical hypothyroidism. Khirurgiia (Mosk). 2016;(7):53-57. doi: 10.17116/hirurgia2016753-57CrossrefGoogle Scholar

  • 10. Bhusal A, Banks SW. Riboflavin Deficiency. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018-.2017 Nov 29.Google Scholar

  • 11. Pinto JT, Zempleni J. American Society for Nutrition. Adv Nutr 2016;7:973–5. doi:10.3945/an.116.012716.CrossrefGoogle Scholar

  • 12. Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition. 2018;54:165-172. doi: 10.1016/j.nut.2018.03.056.CrossrefGoogle Scholar

  • 13. Appenroth D, Schulz O, Winnefeld K..Riboflavin can decrease the nephrotoxic effect of chromate in young and adults rats. Toxicol. Lett. 1996;87:47-52.CrossrefGoogle Scholar

  • 14. Dringen R.: Metabolism and functions of glutatione in brain. Prog. Neurobiol. 2000;62:649-671.Google Scholar

  • 15. Mulherin DM, Thurnham DI, Situnayake RD. Glutathione reductase activity, riboflavin status, and disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 1996;55:837-840.CrossrefGoogle Scholar

  • 16. Ullegaddi R, Powers HJ, Gariball SE. Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: A Randomized Controlled Trial. J. Parent. Enteral Nutr. 2006;30(2):108-114.Google Scholar

  • 17. Watson WH, Cai J, Jones DP. The diet and apoptosis. Ann. Rev. Nutr. 2000;20(1):485-505.CrossrefGoogle Scholar

  • 18. Park KJ, Lee CH, Kim A, Jeong KJ, Kim CH, Kim YS. Death receptors 4 and 5 activate Nox1 NADPH oxidase through riboflavin kinase to induce reactive oxygen species mediated apoptotic cell death. J Biol Chem. 2012;287(5):3313-25. doi: 10.1074/jbc.M111.309021CrossrefGoogle Scholar

  • 19. Dąbrowski J. Colors of your health. Secrets of supplementation. PRO-VITA. 2005Google Scholar

  • 20. Valencia E, Marin A, Hardy G. Glutathione-Nnutritional and pharmacologic viewpoints: Part IV. Nutrition. 2001;17:783-784.CrossrefGoogle Scholar

  • 21. Zawadzki M, Wielkoszyński T, Pawlas K, Januszewska L, Tyrpień K. Wpływ przewlekłej ekspozycji na mangan na aktywność enzymów antyoksydacyjnych związanych z glutationem w wątrobach szczurów-doniesienie wstępne. Ann. Acad. Med. Siles. 2006;60(95):158-162.Google Scholar

  • 22. Kłapcińska B, Derejczyk J, Wieczorowska-Tobis K., Sobczak A., Sadowska-Krępa E, Danch A. Antioxidant defense in centenarians (a preliminary study). Acta Biochim. Pol. 2000;47(2):281–292.CrossrefGoogle Scholar

  • 23. Ali I, Gatasheh MKM, Naseem I. Hemolysis of human red blond cells by riboflavin-Cu (II) system. Biochimica et Biophysica Acta. 2000;1523:225-229.CrossrefGoogle Scholar

  • 24. Jazzar MM, Naseem I. Genotoxicity of photoilluminated riboflavin in the presence of Cu (II). Free Radic. Biol. Bed. 1996;21:7-14.Google Scholar

  • 25. McCormick D.B. Metabolism of vitamins in microbes and mammals. Biochem. Bioph. Res. Commun. 2003;312:97-101.Google Scholar

  • 26. Schwechheimer SK, Becker J, Peyriga L, Portais JC, Wittmann C. Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: industrial riboflavin production under complex nutrient conditions. Microb Cell Fact. 2018 Oct 16;17(1):162. doi: 10.1186/s12934-018-1003-y.CrossrefGoogle Scholar

  • 27. LeBlanc JG, Ruten G, Bruinenberg P., Sesma F, Savoy de Giori G, Smid EJ. A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition 2006;22:645–651.CrossrefGoogle Scholar

  • 28. Mielgo-Ayuso J, Aparicio-Ugarriza R, Olza J, Aranceta-Bartrina J, Gil Á, Ortega RM, et al. Dietary intake and food sources of niacin, riboflavin, thiamin and vitamin B6 in a representative sample of the spanish population. The anthropometry, intake, and energy balance in spain (ANIBES) study. Nutrients. 2018;10(7)pii:E846. doi: 10.3390/nu10070846.CrossrefGoogle Scholar

  • 29. Wang D, Zhang L, Huang X, Wang X, Yang R, Mao J, et al. Identification of nutritional components in black sesame determined by widely targeted metabolomics and traditional chinese medicines. Molecules. 2018;23(5)pii:E1180. doi: 10.3390/molecules23051180CrossrefGoogle Scholar

  • 30. Peechakara BV, Gupta M. Vitamin B2 (riboflavin).StatPearls Publishing; 2018Google Scholar

  • 31. Manthey KC, Rodriguez-Melendez R, Hoi JT, Zemdleni J. Riboflavin deficiency causes protein and DNA damage in HepG2 cells, triggering arrest in G1 phase of the cell cycle. J. Nutr. Biochem. 2006;17;250– 256.Google Scholar

  • 32. Werner R, Manthey KC, Griffin JB, Zempleni J. HepG2 cells develop sinus of riboflavin deficiency within 4 days of culture In riboflavin-deficient medium. J. Nutr. Biochem. 2005;16:617-624.CrossrefGoogle Scholar

  • 33. Camporeale G, Zempleni J. Oxidative folding of interleukin-2 is impaired in flavin-deficient Jurkat cells, causing intracellular accumulation of interleukin-2 and increased expression of stress response genes. J. Nutr. 2003;133:668-672.Google Scholar

  • 34. Mazur-Bialy AI, Buchala B, Plytycz B. Riboflavin deprivation inhibits macrophage viability and activity - a study on the RAW 264.7 cell line. Br J Nutr. 2013;110:509–514.Google Scholar

  • 35. Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflamm. 2013;10:1–12.CrossrefGoogle Scholar

  • 36. Tang J, Hegeman MA, Hu J, Xie M, Shi W, Jiang Y, et alSevere riboflavin deficiency induces alterations in the hepatic proteome of starter Pekin ducks. Br J Nutr. 2017;118(9):641-650. doi: 10.1017/S0007114517002641.CrossrefGoogle Scholar

  • 37. Siassi F, Ghadirian P. Riboflavin deficiency and esophageal cancer: A case control-household study in the Caspian Littoral of Iran. Cancer Detect. Prev. 2005;29;464–469.CrossrefGoogle Scholar

  • 38. Jamieson CP, Obied OA, Powell-Tuck J. The thiamin, riboflavin and pyridoxine status of patients on emergency admission to hospital. Clinical Nutrition, 1999;18(2):87-91.CrossrefGoogle Scholar

  • 39. Rock ChL, Vasantharejan S. Vitamin status of eating disorder patients: Relationship to clinical indices and effect of treatment. 1995.Google Scholar

  • 40. Cevoli S, Favoni V, Cortelli P. Energy metabolism impairment in migraine. Curr Med Chem. 2018 Jun 22. doi: 10.2174/0929867325666180622154411.CrossrefGoogle Scholar

  • 41. Naghashpour M, Jafarirad S, Amani R, Sarkaki A, Saedisomeolia A. Update on riboflavin and multiple sclerosis: a systematic review. Iran J Basic Med Sci. 2017;20(9):958–966. doi: 10.22038/IJBMS.2017.9257CrossrefGoogle Scholar

  • 42. Ajayi OA, Ladipo EM. Reduced glutathione content of erythrocytes in the newborn: comparison with maternal levels. Nutr. Res. Rev. 1987;7(8):825-832.CrossrefGoogle Scholar

  • 43. Sanchez DJ, Murphy MM, Bosch-Sabater J, Fernandez-Ballart J. Enzymic evaluation of thiamin, riboflavin and pyridoxine status of parturient mothers and their newborn infants in a Mediterranean area of Spain. Eur. J. Clin. Nutr. 1999;53:27-38.CrossrefGoogle Scholar

  • 44. Tovar AR, Torres N, Halhali A, Bourges H. Riboflavin and pyridoxine status in a group of pregnant Maxican women. Arch. Med. Res. 1996;272:195-200.Google Scholar

  • 45. Bruinse HW, Berg H. Changes of some vitamin levels during and after normal pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 1995;61:31-37CrossrefGoogle Scholar

  • 46. Jarrah SS, Halabi JO, Bond AE, AbegglenJ. Iron Deficiency Anemia (IDA) Perceptions and dietary iron intake among young women and pregnant women in Jordan. J. Transc. Nurs. 2007;18(1):19-27.PubMedGoogle Scholar

  • 47. Parul Ch, Jiang T, Subarna KK, LeClerq SC, Shrestha SR, West KP. Antenatal supplementation with micronutrients and biochemical indicators of status and subclinical infection in rural Nepal. Am. J. Clin. Nutr. 2006; 83: 788-794.Google Scholar

  • 48. Ortega RM, Quintas ME, Martinez RM, Andres P, Lopez-Sobaler AM, Requejo AM. Riboflavin levels in maternal milk: the influence of vitamin B2status during the third trimester of pregnancy. J. Am. Coll. Nutr. 1999;18:324-329.CrossrefGoogle Scholar

  • 49. Capo-chichi CD, Gueant JL, Lefebvre E, Bennani N, Lorentz E, Vidailhet C, et al. Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. Am. J. Clin. Nutr. 1999;69:672-678.Google Scholar

  • 50. Larsson CL, Johansson GK. Dietary intake and nutritional atatus of young vegans and omnivores in Sweden. Am. J. Clin. Nutr. 2002;76:100-106.Google Scholar

  • 51. Yang FL, Liao PCh, Chen YY, Wang JL, Shaw NS. Prevalence of thiamin and riboflavin deficiency among the elderly in Taiwan. Asia. Pac. J. Clin. Nutr. 2005;14(3):238-243.Google Scholar

  • 52. Malinauskas BM, Overton RF, Carraway VG, Cash BC. Supplements of interest for sport-related injury and sources of supplement information among college athletes. Adv. Med. Sci. 2007;52:50-54.PubMedGoogle Scholar

  • 53. Szczuko M, Migrała R, Drozd A, Banaszczak M, Maciejewska D, Chlubek D, et al. Role of water soluble vitamins in the reduction diet of an amateur sportsman. Open Life Sci. 2018;13:163–173.Google Scholar

  • 54. Graham JM, Peerson JM, Haskell MJ, Shrestha RK. Erythrocyte Riboflavin for the detection of riboflavin deficiency in pregnant Nepali women. Clin. Chem. 2005;51(11):2162-2165.CrossrefGoogle Scholar

  • 55. Anderson BB, Giuberti M, Perry GM, Salsini G, Casadio I, Vullo C. Low red blood cell glutathione reductase and pyridoxine phosphate oxidase activities not related to dietary riboflavin: selection by malaria? Am. J. Clin. Nutr. 1993;57(5):666-672.CrossrefGoogle Scholar

  • 56. Rivlin RS, Riboflavin. In: Bowman BA, Russell RM, editors. Present knowledge In nutrition. Washinghton (DC): ILSI Press; 2001:191-198.Google Scholar

  • 57. Spector R. Riboflavin transport in the central nervous system. Characterization and effects of drugs. J. Clin. Invest. 1980;66:821-831.CrossrefGoogle Scholar

  • 58. Przydanek A, Boczoń K, Wandurska-Nowak E, Wojt W, Wojtkowiak A.: The intriguing influence of albendazole on glutathione reductase activity in the muscles from Trichinella spiralis infected mice. Wiad. Parazyt. 2004;50(2):273-277.PubMedGoogle Scholar

  • 59. Brijlal S, Lakshmi AV. Tissue distribution and turnover of (3H) riboflavin during respiratory infection in mice. Metab. 1999B;48(12):1608-1611.Google Scholar

  • 60. Brijlal S, Lakshmi AV, Bamji MS. Mitochondrial oxidative metabolism during respiratory infection in riboflavin deficient mice. J. Nutr. Biochem. 1999A;10:728 –732.Google Scholar

  • 61. Fuchs D, Jaeger M, Widner B, Wirleitner B, Artner-Dworzak E, Leblhuber F. Is hyperhomocysteinemia due to oxidative depletion of folate rather than insufficient dietary intake. Clin. Chem. Lab. Med. 2001;39:691-694.Google Scholar

  • 62. Ploder M, Schroecksnadel K, Spittler A, Neurauter G, Roth E, Fuchs D. Moderate hyperhomocysteinemia in patients with multiple trauma and with sepsis predicts poor survival. Mol. Med. 2010;16:498-504.CrossrefGoogle Scholar

  • 63. Bosch AM, Stroek K, Abeling NG,Waterham HR, Ijlst L, Wanders RJ. The Brown-Vialetto-Van Laere and Fazio Londe syndrome revisited: natural history, genetics, treatment and future perspectives. Orphanet. J. Rare Dis. 2012;7:83. doi: 10.1186/1750-1172-7-83CrossrefGoogle Scholar

  • 64. Forman EB, Foley AR, King MD. Dramatic improvement of a rare syndrome with high dose riboflavin treatment. Pediatr Neurol. 2018;pii:S0887-8994(18)30166-8. doi: 10.1016/j.pediatrneurol.2018.05.005.Google Scholar

  • 65. Foley AR, Menezes MP, Pandraud A, Gonzalez MA, Al-Odaib A, Abrams AJ, et al. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain. 2014;137:44–56. doi: 10.1093/brain/awt315.CrossrefGoogle Scholar

  • 66. Cornett KMD, Menezes MP, Bray P, Halaki M, Burns J. Established and novel measures of upper limb impairment in children with Charcot-Marie-tooth disease type 1A and riboflavin transporter deficiency type 2. J. Peripher. Nerv. Syst. 2018;23:29–35. doi.org/10.1111/jns.12225CrossrefGoogle Scholar

  • 67. Boisvert WA, Mendoza I, Castaneda C, Portocarrero L, Solomons NW, Gershoff SN, et al. Riboflavin requirement of healthy elderly humans and its relationship to macronutrient composition of the diet. J. Nutr. 1993;123(5):915-925.Google Scholar

  • 68. Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients. 2016;16;8(11)pii:E725.Google Scholar

  • 69. Bates JC, Mansoor MA, Van Der Pols, J, Prentice A, Cole TJ, Finch S. Plasma total homocysteine in a representative sample of 972 British men and women aged 65 and over. Eur. J. Clin. Nutr. 1997;51(10):691-697Google Scholar

  • 70. Szczuko M, Seidler T, Mierzwa M, Stachowska E, Chlubek D. Effect of riboflavin supply on student body’s provision in north-western Poland with riboflavinmeasured by activity of glutathione reductase considering daily intake of other nutrients. Int J Food Sci Nutr. 2011;62(4):431-8. doi:10.3109/09637486.2010.542409Google Scholar

  • 71. Saedisomeolia A, Ashoori M. Riboflavin in Human Health: A Review of Current Evidences. Adv Food Nutr Res. 2018;83:57-81. doi: 10.1016/bs.afnr.2017.11.002. Epub 2018 Feb 2.CrossrefGoogle Scholar

  • 72. McKinley MC, McNulty H, McPartlin J, Strain JJ, Scott JM. Effect of riboflavin supplementation on plasma homocysteine in elderly people with low riboflavin status. Eur J Clin Nutr. 2002;56(9):850-6.CrossrefPubMedGoogle Scholar

  • 73. McNulty H, Dowey le RC, Strain JJ, Dunne A, Ward M, Molloy AM, et al. Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C->T polymorphism. Circulation. 2006;113(1):74-80.Google Scholar

  • 74. Naghashpour M, Amani R, Sarkaki A, Ghadiri A, Samarbafzadeh A, Jafarirad S, et al. Brain-derived neurotrophic and immunologic factors:beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis. Iran J Basic Med Sci. 2016;19:439–448.Google Scholar

  • 75. Mosegaard S, Bruun GH, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, et al. An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Mol Genet Metab. 2017 Dec;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014. Epub 2017 Nov 2.CrossrefGoogle Scholar

  • 76. Ashoori M, Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: a review. Br J Nutr. 2014;111(11):1985-91. doi: 10.1017/S0007114514000178.CrossrefGoogle Scholar

  • 77. Allison T, Roncero I, Forsyth R, Coffman K, Le Pichon JB. Brown-vialetto-van laere syndrome as a mimic of neuroimmune disorders. J Child Neurol. 2017 883073816689517.Google Scholar

  • 78. Goh LL, Lee Y, Tan ES, Lim JSC, Lim CW, Dalan R. Patient with multiple acyl-CoA dehydrogenase deficiency disease and ETFDH mutations benefits from riboflavin therapy: a case report. BMC Med Genomics. 2018;11(1):37. doi: 10.1186/s12920-018-0356-8.CrossrefPubMedGoogle Scholar

  • 79. Fan X, Xie B, Zou J, Luo J, Qin Z, D’Gama AM, et al. Novel ETFDH mutations in four cases of riboflavin responsive multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep. 2018;16:15-19. doi: 10.1016/j.ymgmr.2018.05.007CrossrefGoogle Scholar

  • 80. Ozsvari B, Bonuccelli G, Sanchez-Alvarez R, Foster R, Sotgia F,Lisanti MP. Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: Vitamin B2 (Riboflavin) in cancer therapy. Aging (Albany NY). 2017;9(12):2610–2628. doi: 10.18632/aging.101351CrossrefGoogle Scholar

  • 81. Sau A, Sanyal S, Bera† K, Sen S, Mitra AK, Pal U, et al. DNA Damage and apoptosis induction in cancer cells by chemically engineered thiolated riboflavin gold nanoassembly. ACS Appl. Mater. Interfaces. 2018;10(5):4582–4589. DOI:10.1021/acsami.7b18837CrossrefGoogle Scholar

  • 82. Long L, He JZ, Chen Y, Xu XE, Liao LD, Xie YM, et al.Riboflavin depletion promotes tumorigenesis in HEK293T and NIH3T3 cells by sustaining cell proliferation and regulating cell cycle-related gene transcription. J. Nutr. 2018;148(6):834–843. doi.org/10.1093/jn/nxy047CrossrefGoogle Scholar

  • 83. Zhu L, Tong H, Wang S, Yu Y, Liu Z, Li C, et al. Effectiveness of a flow-based device using riboflavin photochemistry in damaging blood-borne viral nucleic acids. J Photochem Photobiol B. 2018;183:391-396.doi:10.1016/j.jphotobiol.2018.04.035.CrossrefGoogle Scholar

  • 84. Posteraro AF, Mauriello M, Winter SM. Riboflavin treatment of antiretroviral induced lactic acidosis and hepatic steatosis. Conn Med. 2001;65(7):387-90.PubMedGoogle Scholar

  • 85. Mastropasqua L. Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives. Eye Vis (Lond). 2015;29;2:19. doi: 10.1186/s40662-015-0030-6. eCollection 2015.CrossrefGoogle Scholar

About the article

Received: 2018-11-02

Accepted: 2019-01-11

Published Online: 2019-03-20

Citation Information: Pteridines, Volume 30, Issue 1, Pages 33–47, ISSN (Online) 2195-4720, ISSN (Print) 0933-4807, DOI: https://doi.org/10.1515/pteridines-2019-0004.

Export Citation

© 2019 Małgorzata Szczuko et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in