Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quantum Measurements and Quantum Metrology

Ed. by Paternostro, Mauro

1 Issue per year

Open Access
Online
ISSN
2299-114X
See all formats and pricing
More options …

Coherently enhanced measurements in classical mechanics

Daniel Braun
  • Laboratoire de Physique Théorique, IRSAMC, UMR 5152 du CNRS, and Université Paul Sabatier, Toulouse, France and Institut für Theoretische Physik, Universität Tübingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandu Popescu
  • H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-06 | DOI: https://doi.org/10.2478/qmetro-2014-0003

Abstract

In all quantitative sciences, it is common practice to increase the signal-to-noise ratio of noisy measurements by measuring identically prepared systems N times and averaging the measurement results. This leads to a scaling of the sensitivity as 1/√N, known in quantum measurement theory as the “standard quantum limit” (SQL). It is known that if one puts the N systems into an entangled state, a scaling as 1/N can be achieved, the socalled “Heisenberg limit” (HL), but decoherence problems have so far prevented implementation of such protocols for large N. Here we show that a method of coherent averaging inspired by a recent entanglement-free quantum enhanced measurement protocol is capable of achieving a sensitivity that scales as 1/N in a purely classical setup. This may substantially improve the measurement of very weak interactions in the classical realm, and, in particular, open a novel route to measuring the gravitational constant with enhanced precision.

References

  • [1] C. M. Caves, Phys. Rev. D 23, 1693 (1981). Google Scholar

  • [2] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994). Google Scholar

  • [3] V. Giovannetti, S. Loyd, and L. Maccone, Science 306, 1330 (2004). Google Scholar

  • [4] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, Science 304, 1476 (2004). Google Scholar

  • [5] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006). Google Scholar

  • [6] D. Budker and M. Romalis, Nature Physics 3, 227 (2007). CrossrefGoogle Scholar

  • [7] K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, Nature Physics 4, 472 (2008). CrossrefGoogle Scholar

  • [8] T. Nagata, R. Okamoto, J. L. O’Brien, and K. S. S. Takeuchi, Science 316, 726 (2007). Google Scholar

  • [9] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007). Google Scholar

  • [10] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, Biological measurement beyond the quantum limit, arXiv:1206.6928v1. Google Scholar

  • [11] A. Luis, Physics Letters A 329, 8 (2004). Google Scholar

  • [12] J. Beltrán and A. Luis, Phys. Rev. A 72, 045801 (2005). Google Scholar

  • [13] S. M. Roy and S. L. Braunstein, quant-ph/0607152 (2006). Google Scholar

  • [14] A. Luis, Phys. Rev. A 76, 035801 (2007). Google Scholar

  • [15] A. M. Rey, L. Jiang, and M. D. Lukin, Phys. Rev. A 76, 053617 (2007). Google Scholar

  • [16] S. Choi and B. Sundaram, Phys. Rev. A 77, 053613 (2008). CrossrefGoogle Scholar

  • [17] M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, and M. W. Mitchell, Nature 471, 486 (2011). Google Scholar

  • [18] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys. Rev. Lett. 98, 090401 (2007). Google Scholar

  • [19] S. Boixo, A. Datta, S. T. Flammia, A. Shaji, E. Bagan, and C. M. Caves, Phys. Rev. A 77, 012317 (2008). CrossrefGoogle Scholar

  • [20] S. Boixo, A. Datta, M. J. Davis, S. T. Flammia, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 101, 040403 (2008). Google Scholar

  • [21] M. G. A. Paris, International Journal of Quantum Information 7, 125 (2009). Google Scholar

  • [22] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, arXiv:1102.2318. Google Scholar

  • [23] J. J. . Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996). Google Scholar

  • [24] H. Lee, P. Kok, and J. P. Dowling, J. Mod. Opt. 49, 2325 (2002). Google Scholar

  • [25] S. Massar and E. S. Polzik, Phys. Rev. Lett. 91, 060401 (2003). Google Scholar

  • [26] V. Giovannetti, S. Lloyd, and L. Maccone, Nature 412, 417 (2001). Google Scholar

  • [27] C. A. Santivanez, S. Guha, Z. Dutton, M. Annamalai, M. Vasilyev, B. J. Yen, R. Nair, and J. H. Shapiro (2011), vol. Confernce Proceedings SPIE 8613, (San Diego, CA, USA); Quantum Communications and Quantum Imaging IX, eds. Ronald E. Meyers; Yanhua Shih; Keith S. Deacon, pp. 81630Z–81630Z–16. Google Scholar

  • [28] M. D’Angelo, M. V. Chekhova, and Y. Shih, Phys. Rev. Lett. 87, 013602 (2001). Google Scholar

  • [29] S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A 78, 063828 (2008). CrossrefGoogle Scholar

  • [30] T. M. Stace, Quantum limits of thermometry (2010), arXiv: 1206.6928v1. Google Scholar

  • [31] U. Marzolino and D. Braun, Precision measurements with quantum gases (2013), arXiv:1308.2735. Google Scholar

  • [32] J. Huang, S. Wu, H. Zhong, and C. Lee, Quantum metrology with cold atoms (2013), arXiv:1308.6092. Google Scholar

  • [33] O. Pinel, J. Fade, D. Braun, P. Jian, N. Treps, and C. Fabre, Phys. Rev. A 85, 010101 (2012). Google Scholar

  • [34] T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, Science 316, 726 (2007). Google Scholar

  • [35] K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, Nature Physics 4, 472 (2008). CrossrefGoogle Scholar

  • [36] L. S. C. . T. V. Collaboration", Nature 460, 990 (2009). Google Scholar

  • [37] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865–3868 (1997). Google Scholar

  • [38] J. Kołodynski and R. Demkowicz-Dobrzanski, Phys. Rev. A 82, 053804 (2010). Google Scholar

  • [39] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nat Phys 7, 406 (2011). CrossrefGoogle Scholar

  • [40] T. L. S. Collaboration, Nature Physics 7, 962 (2011). Google Scholar

  • [41] T. L. S. Collaboration, Nat. Photon 7, 613 (2013). Google Scholar

  • [42] R. Demkowicz-Dobrzanski, K. Banaszek, and R. Schnabel, Phys. Rev. A 88, 041802 (2013). Google Scholar

  • [43] A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 109, 233601 (2012). Google Scholar

  • [44] D. Braun and J. Martin, Nat. Commun. 2, 223 (2011). Google Scholar

  • [45] D. Braun and J. Martin, Decoherence-enhanced measurements (2009), arXiv:0902.1213. Google Scholar

  • [46] G. T. Gillies, Reports on Progress in Physics 60, 151 (1997). Google Scholar

  • [47] D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach, B. R. Heckel, C. D. Hoyle, and H. E. Swanson, Phys. Rev. Lett. 98, 021101 (2007). Google Scholar

About the article

Received: 2014-04-16

Revised: 2014-06-13

Accepted: 2014-07-03

Published Online: 2014-08-06


Citation Information: Quantum Measurements and Quantum Metrology, Volume 2, Issue 1, ISSN (Online) 2299-114X, DOI: https://doi.org/10.2478/qmetro-2014-0003.

Export Citation

©2014 Daniel Braun and Sandu Popescu. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniel Braun, Gerardo Adesso, Fabio Benatti, Roberto Floreanini, Ugo Marzolino, Morgan W. Mitchell, and Stefano Pirandola
Reviews of Modern Physics, 2018, Volume 90, Number 3
[2]
Michael Walter and Joseph M. Renes
IEEE Transactions on Information Theory, 2014, Volume 60, Number 12, Page 8007
[3]
Julien Mathieu Elias Fraïsse and Daniel Braun
Annalen der Physik, 2015, Volume 527, Number 9-10, Page 701

Comments (0)

Please log in or register to comment.
Log in