Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quantum Measurements and Quantum Metrology

Ed. by Paternostro, Mauro

Open Access
See all formats and pricing
More options …

Phase estimation with squeezed single photons

Stefano Olivares / Maria Popovic / Matteo G. A. Paris
Published Online: 2016-05-12 | DOI: https://doi.org/10.1515/qmetro-2016-0007


We address the performance of an interferometric setup in which a squeezed single photon interferes at a beam splitter with a coherent state. Our analysis in based on both the quantum Fisher information and the sensitivity when a Mach-Zehnder setup is considered and the difference photocurrent is detected at the output. We compare our results with those obtained feeding the interferometer with a squeezed vacuum (with the same squeezing parameter of the squeezed single photon) and a coherent state in order to have the same total number of photons circulating in the interferometer. We find that for fixed squeezing parameter and total number of photons there is a threshold of the coherent amplitude interfering with the squeezed single photon above which the squeezed single photons outperform the performance of squeezed vacuum (showing the highest quantum Fisher information). When the difference photocurrent measurement is considered, we can always find a threshold of the squeezing parameter (given the total number of photons and the coherent amplitude) above which squeezed single photons can be exploited to reach a better sensitivity with respect to the use of squeezed vacuum states also in the presence of non unit quantum efficiency.

Keywords: interferometry; squeezing; quantum estimation


  • [1] M. Kacprowicz, R. Demkowicz-Dobrzanski, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Experimental quantum-enhanced estimation of a lossy phase shift”, Nature Phot. 4, 357 (2010).Web of ScienceGoogle Scholar

  • [2] J. Abadie, et al. (the LIGO Scientific Collaboration), A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys. 7, 962 (2011).CrossrefGoogle Scholar

  • [3] R. Demkowicz-Dobrzanski, K. Banaszek, and R. Schnabel, “Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600”, Phys. Rev. A 88, 041802(R) (2013).Web of ScienceGoogle Scholar

  • [4] I. Ruo Berchera, I. P. Degiovanni, S. Olivares, and M. Genovese, “Quantum light in coupled interferometers for quantum gravity tests”, Phys. Rev. Lett. 110, 213601 (2013).CrossrefGoogle Scholar

  • [5] I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry”, Phys. Rev. A 92, 053821 (2015).Web of ScienceCrossrefGoogle Scholar

  • [6] M. G. A. Paris, “Small amount of squeezing in high-sensitive realistic interferometry”, Phys. Lett A 201, 132 (1995)Google Scholar

  • [7] L. Pezzé, and A. Smerzi, “Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light”, Phys. Rev. Lett. 100, 073601 (2008).Web of ScienceCrossrefGoogle Scholar

  • [8] S. Olivares, and M. G. A. Paris, “Optimized Interferometry with Gaussian States”, Optics Spectr. 103, 231 (2007).Web of ScienceGoogle Scholar

  • [9] M. D. Lang, and C. M. Caves, “Optimal Quantum-Enhanced Interferometry Using a Laser Power Source”, Phys. Rev. Lett. 111, 173601 (2013).CrossrefWeb of ScienceGoogle Scholar

  • [10] M. D. Lang, and C. M. Caves, “Optimal quantum-enhanced interferometry”, Phys. Rev. A 90, 025802 (2014).Web of ScienceCrossrefGoogle Scholar

  • [11] C. Sparaciari, S. Olivares, and M. G. A. Paris, “Bounds to precision for quantum interferometry with Gaussian states and operations”, J. Opt. Soc. Am. B 32, 1354 (2015).Web of ScienceCrossrefGoogle Scholar

  • [12] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodynski, “Quantum Limits in Optical Interferometry”, Progress in Optics 60, 345 (2015).Google Scholar

  • [13] C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements”, Phys. Rev. A 93, 023810 (2016).Web of ScienceCrossrefGoogle Scholar

  • [14] P. Sekatski, N. Sangouard, M. Stobinska, F. Bussières, M. Afzelius, and N. Gisin, “Proposal for exploring macroscopic entanglement with a single photon and coherent states”, Phys. Rev. A 86, 060301(R) (2012).Web of ScienceCrossrefGoogle Scholar

  • [15] C. Vitelli, N. Spagnolo, L. Toffoli, F. Sciarrino, and F. De Martini, “Enhanced resolution of lossy interferometry by coherent amplification of single photons”, Phys. Rev. Lett. 105, 113602 (2010)Web of ScienceCrossrefGoogle Scholar

  • [16] J. Wenger, R. Tualle-Bouri, and P. Grangier, “Non-Gaussian Statistics from Individual Pulses of Squeezed Light”, Phys. Rev. Lett. 92 153601 (2004).Google Scholar

  • [17] S. Olivares, and M. G. A. Paris, “Squeezed Fock state by inconclusive photon subtraction”, J. Opt. B: Quantum Semiclass. Opt. 7, S616 (2005).Google Scholar

  • [18] M. G. A. Paris, “Quantum estimation for quantum technology”, Int. J. Quant. Inf. 7, 125 (2009).CrossrefGoogle Scholar

  • [19] C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).Google Scholar

  • [20] D. C. Brody, and L. P. Hughston, “Statistical geometry in quantum mechanics”, Proc. Roy. Soc. Lond. A 454, 2445 (1998); “Geometrization of statistical mechanics”, Proc. Roy. Soc. Lond. A 455, 1683 (1999).CrossrefGoogle Scholar

  • [21] S. L. Braunstein, and C. M. Caves, “Statistical distance and the geometry of quantum states”, Phys. Rev. Lett. 72, 3439 (1994).CrossrefGoogle Scholar

  • [22] S. L. Braunstein, C. M. Caves, and G. J. Milburn, “Generalized uncertainty relations: Theory, examples, and Lorentz invariance”, Ann. Phys. 247, 135 (1996).Google Scholar

  • [23] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005).Google Scholar

About the article

Received: 2016-04-01

Accepted: 2016-04-21

Published Online: 2016-05-12

Published in Print: 2016-01-01

Citation Information: Quantum Measurements and Quantum Metrology, Volume 3, Issue 1, ISSN (Online) 2299-114X, DOI: https://doi.org/10.1515/qmetro-2016-0007.

Export Citation

© 2016 Stefano Olivares et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

I Ruo Berchera and I P Degiovanni
Metrologia, 2019, Volume 56, Number 2, Page 024001
A Meda, E Losero, N Samantaray, F Scafirimuto, S Pradyumna, A Avella, I Ruo-Berchera, and M Genovese
Journal of Optics, 2017, Volume 19, Number 9, Page 094002

Comments (0)

Please log in or register to comment.
Log in