Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quantum Measurements and Quantum Metrology

Ed. by Paternostro, Mauro

Open Access
See all formats and pricing
More options …

Collision models in quantum optics

Francesco Ciccarello
  • NEST, Istituto Nanoscienze-CNR and Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/qmetro-2017-0007


Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs’ literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

Keywords : collision models; quantum non-Markovian dynamics; input-output formalism


  • [1] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, (Oxford, Oxford University Press, 2002); A. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction, (Springer, Heidelberg, 2011)Google Scholar

  • [2] H.-P. Breuer, J. Phys. B: At. Mol. Opt. Phys. 45, 154001 (2012); A. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys. 77, 094001 (2014); H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)Google Scholar

  • [3] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 15001 (2017)Google Scholar

  • [4] F. Ciccarello, G. M. Palma, and V. Giovannetti, Phys. Rev. A 87, 040103(R) (2013).Google Scholar

  • [5] F. Ciccarello and V. Giovannetti, Phys. Scrip. T153, 014010 (2013)Google Scholar

  • [6] R. McCloskey and M. Paternostro, Phys. Rev. A 89, 052120 (2014)Google Scholar

  • [7] J. Jin, V. Giovannetti, R. Fazio, F. Sciarrino, P.Mataloni, A. Crespi, and R. Osellame, Phys. Rev. A 91, 012122 (2015)Google Scholar

  • [8] S. Lorenzo, F. Ciccarello, and G. M. Palma, Phys. Rev. A 93, 052111 (2016)Google Scholar

  • [9] S. Kretschmer, K. Luoma, and W. T. Strunz, Phys. Rev. A 94, 012106 (2016)CrossrefGoogle Scholar

  • [10] B. Cakmak, M. Pezzutto, M. Paternostro, and O. E. Mustecaplõoglu, Phys. Rev. A 96, 022109 (2017)Google Scholar

  • [11] V. Giovannetti, and G. M. Palma, Phys. Rev. Lett. 108, 040401 (2012)Google Scholar

  • [12] V. Giovannetti, and G. M. Palma, J. Phys. B 45, 154003 (2012)Google Scholar

  • [13] S. Cusumano, A. Mari, and V. Giovannetti, Phys. Rev. A 95, 053838 (2017)Google Scholar

  • [14] S. Cusumano, A. Mari, and V. Giovannetti, arXiv:1709.05826Google Scholar

  • [15] S. Lorenzo, F. Ciccarello, and G. M. Palma, Phys. Rev. A 96, 032107 (2017).CrossrefGoogle Scholar

  • [16] A. L. Grimsmo, Phys. Rev. Lett. 115, 060402 (2015)Google Scholar

  • [17] S. J. Whalen, A. L. Grimsmo, and H. J. Carmichael, Quantum Sci. Technol. 2, 044008 (2017)Google Scholar

  • [18] T. Rybar, S. N. Filippov, M. Ziman, and V. Buzek, J. Phys. B 45, 154006 (2012)Google Scholar

  • [19] N. K. Bernardes, A. R. R. Carvalho, C. H. Monken, M. F. Santos, Phys. Rev A 90, 032111 (2014)CrossrefGoogle Scholar

  • [20] N. K. Bernardes, A. Cuevas, A. Orieux, C. H. Monken, P.Mataloni, F. Sciarrino, and M. F. Santos, Sci. Rep. 5, 17520 (2015)Google Scholar

  • [21] N. K. Bernardes, J. P. S. Peterson, R. S. Sarthour, A. M. Souza, H. Monken, I. Roditi, I. S. Oliveira, and M. F. Santos, Sci. Rep. 6, 33945 (2016)Google Scholar

  • [22] N. K. Bernardes, A. R. R. Carvalho, C. H. Monken, M. F. Santos, Phys. Rev. A 95, 032117 (2017)Google Scholar

  • [23] E. Mascarenhas, and I.de Vega, Phys. Rev. A 96, 062117 (2017)Google Scholar

  • [24] S. N. Filippov, J. Piilo, S. Maniscalco, and M. Ziman, Phys. Rev. A 96, 032111 (2017)CrossrefGoogle Scholar

  • [25] A. Dabrowska, G. Sarbicki, and D. Chruscinski, Phys. Rev. A 96, 053819 (2017)Google Scholar

  • [26] C. A. Rodriguez-Rosario and E. C. G. Sudarshan, arXiv:0803.1183.Google Scholar

  • [27] K. Modi, C. A. Rodriguez-Rosario, and A. Aspuru-Guzik, Phys. Rev. A 86, 064102 (2012).Google Scholar

  • [28] C. A. Rodriguez-Rosario and E. C. G. Sudarshan, Int. J. Quantum Inform. 9, 1617 (2011).Google Scholar

  • [29] J. Rau, Phys. Rev. 129, 1880 (1963)Google Scholar

  • [30] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics Vol. 717 (Springer, Berlin, 1987)Google Scholar

  • [31] T. A. Brun, Am. J. Phys. 70, 719 (2002)CrossrefGoogle Scholar

  • [32] V. Scarani M. Ziman, P. Stelmachovic, N. Gisin, and V. Buzek, Phys. Rev. Lett. 88, 097905 (2002)Google Scholar

  • [33] M. Ziman, P. Stelmachovic, V. Buzek, M. Hillery, V. Scarani, and N. Gisin, Phy. Rev. A 65 , 042105 (2002)Google Scholar

  • [34] M. Ziman, P. Stelmachovic, and V. Buzek, J. Opt. B: Quantum Semiclass. Opt. 5, S439 (2003)Google Scholar

  • [35] L. Bruneau, A. Joye, and M. Merkli, J. Math. Phys. 55, 075204 (2014)Google Scholar

  • [36] M. Ziman, P. Stelmachovic, and V.Buzek, Open Sys. and Inf. Dyn. 12, 81 (2005)Google Scholar

  • [37] B. Vacchini, Phys. Rev. A 87, 030101(R) (2013); Int. J. Quantum Inform. 12, 1461011 (2014); Phys. Rev. Lett. 117, 230401 (2016)Google Scholar

  • [38] D. Chruscinski and A. Kossakowski, Phys. Rev. A 94, 020103(R) (2016); Phys. Rev. A 95, 042131 (2017)CrossrefGoogle Scholar

  • [39] S. Lorenzo, F. Ciccarello, G. M. Palma, and B. Vacchini, Open Sys. and Inf. Dyn. 24, 1740011 (2017)Google Scholar

  • [40] There are experimentally observable open dynamics fully described by CMs, such as the interaction of a high-finesse cavity mode with a stream of flying atoms. Such intrinsically discrete processes can however be regarded as engineered open dynamics.Google Scholar

  • [41] C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, (Springer, Berlin, 2004)Google Scholar

  • [42] M. G. Genoni, L. Lami, and A. Serafini, Contemp. Phys. 57, 331 (2016)Google Scholar

  • [43] H. Pichler, and P. Zoller, Phys. Rev. Lett. 116, 093601 (2016)Google Scholar

  • [44] P.-O. Guimond, M. Pletyukhov, H. Pichler, and P. Zoller, Quantum Sci. Technol. 2 044012 (2017)Google Scholar

  • [45] K. A. Fischer et al., arXiv:1710.02875Google Scholar

  • [46] J. A. Gross, C. M. Caves, G. J. Milburn, and J. Combes, arXiv:1710.09523Google Scholar

  • [47] J. Combes, J. Kerckhoff, and M. Sarovarn, Adv. Phys.: X 2, 784 (2017)Google Scholar

  • [48] Themapping between the ancillas of a discrete memoryless CM and a continuous quantumfield which is discussed in this work is present in some Mathematics literature, typically in connection with the derivation of the Langevin equation. See e.g. S. Attal and Y. Pautrat, Ann. Henri Poincare’ 7, 59 (2006) and S. Attal S., A. Joye, J. Func. Anal. 247, 253s (2007).CrossrefGoogle Scholar

  • [49] While it is always possible to arrange ˆHS and ˆVSn as in Eq. (3), in general each can have several associated characteristic frequencies. For the sake of argument, we did not consider this more general case which can be found e.g. in Ref. [50].Google Scholar

  • [50] N. Altamirano, P. Corona-Ugalde, R. Mann, and M. A. Zych, New J. Phys. 19, 013035 (2017)Google Scholar

  • [51] In the latter case,ˆV Sn is required to remain time-independent in the rotating frame. The extension to the case that ˆV Sn is timedependent is yet straightforward.Google Scholar

  • [52] D. Layden, E. Martin-Martinez, and A. Kempf, Phys. Rev. A 93, 040301 (2016)Google Scholar

  • [53] B. Sutton and S. Datta, Sci Rep. 5, 17912 (2015)Google Scholar

  • [54] S. Lorenzo, R. McCloskey, F. Ciccarello, M. Paternostro, and G. M. Palma, Phys. Rev.Lett. 115, 120403 (2015).Google Scholar

  • [55] M. Pezzutto, M. Paternostro, and Y. Omar, New J. Phys. 18, 123018 (2016)Google Scholar

  • [56] The vacuumstate of the nth input mode is defined by ˆ nj0in=0. Based on Eq. (43), for [xxx] Correspondingly, in the same limit, ˆa(!) N nj0in=0 [58], hence j0i= N nj0in.Google Scholar

  • [57] R. Loudon, The Quantum Theory of Light, (Oxford University Press, New York, 2003), 3rd edGoogle Scholar

  • [58] See e.g. L.Mandel, and E.Wolf, Optical Coherence and Quantum Optics, (Cambridge University Press, Cambridge, 1995)Google Scholar

  • [59] M. Suzuki, Comm. Math. Phys. 51, 183 (1976)Google Scholar

  • [60] Y. -L. L. Fang, F. Ciccarello, and H. U. Baranger, arXiv:1707.05946Google Scholar

  • [61] It is not by chance that typical Lindblad MEs occurring in quantum optics, which are essentially based on the same Hamiltonian model as in Section 3.1 and in particular Eq. (23), are known to be obtainable without making approximations, see e.g. A. Barchielli, Phys. Rev. A 34, 1642 (1986).Google Scholar

  • [62] We do not discuss here the validity conditions of these assumptions. A recent thorough discussion can be found e.g. in Ref. [46].Google Scholar

  • [63] U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002); T. Tufarelli, F. Ciccarello, and M. S. Kim, Phys. Rev. A 87, 013820 (2013)CrossrefGoogle Scholar

  • [64] T. Tufarelli, M. S. Kim, and F. Ciccarello, Phys. Rev. A 90, 012113 (2014); T. Tufarelli, M. S. Kim, and F. Ciccarello, Phys. Scrip. T160, 014043 (2014)Google Scholar

  • [65] W. Gardiner, Opt. Comm. 243, 57 (2004)Google Scholar

  • [66] See e.g. L. Diosi and L. Ferialdi, Phys. Rev. Lett. 113, 200403 (2014); A. Tilloy, Quantum 1, 29 (2017)Google Scholar

About the article

Received: 2017-11-20

Accepted: 2017-12-05

Published Online: 2017-12-29

Published in Print: 2017-12-20

Citation Information: Quantum Measurements and Quantum Metrology, Volume 4, Issue 1, Pages 53–63, ISSN (Online) 2299-114X, DOI: https://doi.org/10.1515/qmetro-2017-0007.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shakib Daryanoosh, Ben Q. Baragiola, Thomas Guff, and Alexei Gilchrist
Physical Review A, 2018, Volume 98, Number 6
Steve Campbell, Francesco Ciccarello, G. Massimo Palma, and Bassano Vacchini
Physical Review A, 2018, Volume 98, Number 1
Zhong-Xiao Man, Yun-Jie Xia, and Rosario Lo Franco
Physical Review A, 2018, Volume 97, Number 6
Jonathan A Gross, Carlton M Caves, Gerard J Milburn, and Joshua Combes
Quantum Science and Technology, 2018, Volume 3, Number 2, Page 024005

Comments (0)

Please log in or register to comment.
Log in