Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quantum Measurements and Quantum Metrology

Ed. by Paternostro, Mauro

Open Access
See all formats and pricing
More options …

Autocorrelation functions: a useful tool for both state and detector characterisation

Giovanni Chesi
  • Corresponding author
  • Department of Science and High Technology, University of Insubria, Via Valleggio 11, I-22100 Como (Italy)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alessia Allevi / Maria Bondani
Published Online: 2019-09-18 | DOI: https://doi.org/10.1515/qmetro-2019-0001


The calculation of autocorrelation functions represents a routinely used tool to characterise quantum states of light. In this paper, we evaluate the g(2) function for detected photons in the case of mesoscopic multi-mode twin-beam states in order to fully investigate their statistical properties starting from measurable quantities. Moreover, we show that the second-order autocorrelation function is also useful to estimate the spurious effects affecting the employed Silicon-photomultiplier detectors.

Keywords: autocorrelation functions; photon-statistics; photodetectors; parametric downconversion


  • [1] R. Glauber, Phys. Rev. 130, 2529-2539 (1963).Google Scholar

  • [2] R. Loudon, The quantum theory of light, 3rd edition, (Oxford Science Publications).Google Scholar

  • [3] M. Avenhaus, K. Laiho, M. V. Chekhova, and Ch. Silberhorn, Phys. Rev. Lett. 104, 063602 (2010).Google Scholar

  • [4] M. Blazek and W. Elsäßer, Phys. Rev. A 84, 063840 (2011).Google Scholar

  • [5] N. Somaschi et al., Nature Photon. 10, 340–345 (2016).Google Scholar

  • [6] A. Allevi and M. Bondani, Sci. Rep. 7, 16787 (2017).Google Scholar

  • [7] A. Allevi, S. Cassina, and M. Bondani, Quantum Meas. Quantum Metrol. 4, 26-34 (2017).Google Scholar

  • [8] M. Bondani, A. Allevi, A. Agliati, and A. Andreoni, J. Mod. Opt. 56, 226-231 (2009).Google Scholar

  • [9] G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, Phys. Rev. Lett. 116, 143601 (2016).Google Scholar

  • [10] A. Allevi, S. Olivares, and M. Bondani, Phys. Rev. A 85, 063835 (2012).Google Scholar

  • [11] A. V. Akindinov, A. N. Martemianov, P. A. Polozov, V. M. Golovin, and E. A. Grigoriev, Nucl. Instrum. Methods Phys. Res. A 387, 231–234 (1997).Google Scholar

  • [12] G. Bondarenko, B. Dolgoshein, V. Golovin, A. Ilyin, R. Klanner, and E. Popova, Nucl. Physics. B (proc. Suppl.) 61B, 347-352 (1998).Google Scholar

  • [13] V. Saveliev and V. Golutvin, Nucl. Instrum. Methods A 442, 223 (2000).Google Scholar

  • [14] C. Piemonte, Nucl. Instrum. Methods A 568, 224 (2006).Google Scholar

  • [15] D. Renker and E. Lorenz, J. Instrum. 4, P04004 (2009).CrossrefGoogle Scholar

  • [16] P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, Nucl. Instrum. Methods Phys. Res. A 504, 48-52 (2003).Google Scholar

  • [17] M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, J. Opt. Soc. Am. B 27, 852-862 (2010).CrossrefGoogle Scholar

  • [18] I. Afek, A. Natan, O. Ambar, and Y. Silberberg, Phys. Rev. A 79, 043830 (2009).Google Scholar

  • [19] D. A. Kalashnikov, S. H. Tan, T. Sh. Iskhakov, M. V. Chekhova, and L. A. Krivitsky, Opt. Lett. 37, 2829-2831 (2012).Google Scholar

  • [20] http://www.hamamatsu.com.

  • [21] G. Chesi, L. Malinverno, A. Allevi, R. Santoro, A. Martemiyanov, M. Caccia, and M. Bondani, Sci. Rep. 9, 7433 (2019).Google Scholar

  • [22] A. Gola, A. Ferri, A. Tarolli, N. Zorzi, and C. Piemonte, Phys. Med. Biol. 59, 3615–3635 (2014).Google Scholar

  • [23] http://www.hamamatsu.com/us/en/S13360-1350CS.html.

  • [24] F. Paleari, A. Andreoni, G. Zambra, and M. Bondani, Opt. Express 12, 2816-2824 (2004).CrossrefGoogle Scholar

  • [25] G. Chesi, L. Malinverno, A. Allevi, R. Santoro, M. Caccia, and M. Bondani, Opt. Lett. 4, 1371-1374 (2019).Google Scholar

  • [26] The mean error is defined i=1N|gexp(2)-gth(2)|/(N-P)as, where exp and th are referred to data and theory, respectively and p is the number of used fitting parameters.Google Scholar

  • [27] D. N. Klyshko, Phys. Usp. 39, 573 (1996).Google Scholar

  • [28] R. Short and L. Mandel, Phys. Rev. Lett. 51, 384–387 (1983).CrossrefGoogle Scholar

  • [29] W. Vogel and D. -G. Welsch, Quantum Optics (John Wiley & Sons, New York, NY, 1996).Google Scholar

  • [30] A. Allevi and M. Bondani, Adv. At. Mol. Opt. Phys. 66, 49-110 (2017).Google Scholar

  • [31] M. Bondani, A. Allevi, G. Zambra, M. G. A. Paris, and A. Andreoni, Phys. Rev. A 76, 013833 (2007).CrossrefGoogle Scholar

  • [32] M. Lamperti, A. Allevi, M. Bondani, R. Machulka, V. Michálek, O. Haderka, and J. Peřina Jr., J. Opt. Soc. Am. B 31, 20-25 (2014).CrossrefGoogle Scholar

  • [33] J. Laurat, T. Coudreau, N. Treps, A. Maître, and C. Fabre, Phys. Rev. Lett. 91, 213601 (2003).Google Scholar

  • [34] J. Laurat, T. Coudreau, N. Treps, A. Maître, and C. Fabre, Phys. Rev. A 69, 033808 (2004).Google Scholar

  • [35] A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 96, 213601 (2006).Google Scholar

  • [36] T. Sh. Iskhakov, V. C. Usenko, U. L. Andersen, R. Filip, M. V. Chekhova, and G. Leuchs, Opt. Lett. 41, 2149-2152 (2016).Google Scholar

About the article

Received: 2018-11-11

Accepted: 2019-03-05

Published Online: 2019-09-18

Published in Print: 2019-01-01

Citation Information: Quantum Measurements and Quantum Metrology, Volume 6, Issue 1, Pages 1–6, ISSN (Online) 2299-114X, DOI: https://doi.org/10.1515/qmetro-2019-0001.

Export Citation

© 2019 Giovanni Chesi et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in