Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quaestiones Geographicae

The Journal of Adam Mickiewicz University

4 Issues per year


CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.258
Source Normalized Impact per Paper (SNIP) 2016: 0.359

Open Access
Online
ISSN
2081-6383
See all formats and pricing
More options …

Heavy metals in fluvial sediments of the Odra River flood plains - introductory research

Aleksandra Ibragimow / Grażyna Głosińska / Marcin Siepak
  • Department of Hydrogeology and Water Protection, Adam Mickiewicz University, Institute of Geology, Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Walna
Published Online: 2010-04-05 | DOI: https://doi.org/10.2478/v10117-010-0004-7

Heavy metals in fluvial sediments of the Odra River flood plains - introductory research

The article presents the results of research on concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in fluvial sediment samples collected in the flood plains of the Odra River. The samples were collected from the presently flooded area and from the area which was formerly flooded. The extraction of sediment samples was conducted using aqua regia and four other extractants: 0.01M CaCl2, 0.1M HCl, 0.005M DTPA and 0.02M EDTA. The analysis of the results revealed different concentration values for particular sample collection sites situated along the course of the Odra River. The differentiation of metal concentrations in the investigated samples depending on the extractants was also observed. The concentrations of metals were determined using the technique of atomic absorption spectrometry with flame atomization (F-AAS).

Keywords: heavy metals; single extraction; fluvial sediments; the Odra River

  • Adamiec E. & Helios-Rybicka E., 2002. Distribution of pollutants in the Odra River system. Assessment of total and mobile heavy metals content in the suspended matter and sediments of the Odra River system and recommendations for river chemical monitoring. Polish Journal of Environmental Studies 11: 675-688.Google Scholar

  • Aslibekian O. & Moles R., 2003. Environmental risk assessment of metals contaminated soils at Silvermines abandoned mine site, CoTipperary, Ireland. Environmental Geochemistry and Health 25: 247-266. DOI: 10.1023/A:1023251102402CrossrefGoogle Scholar

  • Bleeker E. A. J. & Van Gestel C. A. M., 2007. Effects of spatial and temporal variation in metal availability on earth-worms in floodplain soils of the river Dommel, The Netherlands. Environmental Pollution 148: 824-832. DOI: 10.1016/j.envpol.2007.01.034Web of ScienceCrossrefGoogle Scholar

  • Bojakowska I. & Sokołowska G., 1998. Geochemical purity classes of bottom sediments (in Polish). Przegląd Geologiczny 46: 49-55.Google Scholar

  • Boszke L., Sobczyński T., Głosińska G., Kowalski A. & Siepak J., 2004. Distribution of mercury and other heavy metals in bottom sediments of the Middle Odra River (Germany/Poland). Polish Journal of Environmental Studies 13: 595-502.Google Scholar

  • Dąbkowska-Naskręt H., Kobierski M. & Różański S., 2000. Trace metals distribution and mobility in alluwial soils of the Wisła River Valley, Poland. Mengen Spurenelement. 20, 152-157.Google Scholar

  • Gąsior J. & Paśko J., 2007. Effect of floods on the contents of soluble element forms against a background of soil differentiation (in Polish). Zesz. Problem. Post. Nauk Roln. 520: 39-46.Google Scholar

  • Głosińska G., Sobczyński T., Boszke L., Bierła K. & Siepak J., 2005. Fractionation of some heavy metals in bottom sediments from the middle Odra River. Polish Journal of Environmental Studies 14: 305-317.Google Scholar

  • Helios-Rybicka E. T., Sikora W., Wójcik R., Wardas M., Strzebońska M., Adamiec E. & Łagaj Ł., 2000. Estimation of pollution by heavy metals of bottom sediments in the Upper and Middle Odra river (in Polish). Gospodarka Wodna 8: 300-304.Google Scholar

  • Hudson-Edwards K. A., Shell C. & Macklin M. G., 1999. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Applied Geochemistry 14: 1015-1030. DOI: 10.1016/S0883-2927(99)00008-6CrossrefGoogle Scholar

  • Hulanicki A., 1998. Speciation and speciation analysis (in Polish). In: A. Kabata-Pendias & B. Szteke (eds.), Quality problems in trace analysis in environmental studies. Wydawnictwo Edukacyjne, Warszawa.Google Scholar

  • Kabata-Pendias A. & Pendias H., 1999. Biogeochemistry of trace elements (in Polish). Wydawnictwo Naukowe PWN, Warszawa.Google Scholar

  • Karczewska A., 2002. Heavy metals in soils polluted with emissions from copper works (in Polish). Zeszyty Naukowe Akademii Rolniczej, Wrocław.Google Scholar

  • Karczewska A. & Kabała C., 2008. Methodology of soil and plants laboratory analyses, 4th edition (in Polish). Wrocław.Google Scholar

  • Leece S. A. & Pavlowsky R. T., 1997. Storage of mining related zinc in floodplain sediments, Blue River, Wisconsin. Physical Geography 18: 424 - 439.Google Scholar

  • Lewandowski A. & Przewłócki J., 1995. Engineering aspects of pollution in view of case studies carried out in Poland. In: W. Salomons U. Förstner & P. Mader (eds.), Heavy metals, problems and solutions. Springer, Berlin.Google Scholar

  • Lopes-Sanchez J. F., Sahuquilo A., Rauret G., Lachica M., Gomez A., Ure A. M., Muntau H., & Quevauviller Ph., 2002. Extraction procedures for soil analysis. In: Ph. Quevauviller (ed.), Methodologies for soil and sediment fractionation studies. The Royal Society of Chemistry, Brussel.Google Scholar

  • Miller J. R., 1997. The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration 58: 101-118.Google Scholar

  • Minister of the Environment Regulation of 9 September 2002 on soil and earth quality standards. Dziennik Ustaw 02. 165.1359).Google Scholar

  • Owens P. N., Walling D. E. & Leeks G. J. L., 1999. Deposition and storage of fine-grained sediment within the main channel system of the river Tweed, Scotland. Earth Surface Processes and Landforms 24: 1061-1076. DOI: 10.1002/(SICI)1096-9837(199911)24:12CrossrefGoogle Scholar

  • Peijnenburg W., Zablotskaja M. & Vijver M. G., 2007. Monitoring metals in terrestrial environments within a bioavailability framework and focus on soil extraction. Ecotox. Environmental Safety 67: 163-179.Google Scholar

  • PN-ISO 11466, 2002. Soil quality. Extraction of trace elements soluble in aqua regia (in Polish).Google Scholar

  • Quevauviller Ph., 2002. SM&T Activities in Support of standardization of operationally-defined extraction procedures for soil and sediment analysis. In: Ph. Quevauviller (ed.), Methodologies for soil and sediment fractionation studies. The Royal Society of Chemistry, Brussel.Google Scholar

  • Schroeder T., J., Hiemstra T., Vink J.,P. M. & Van der Zee S. E. A. T. M., 2005. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the Rivers Rhine and Meuse. Environmental Science and Technology 39: 7176-7184. DOI: 10.1021/es048154sCrossrefGoogle Scholar

  • Schipper A. M., Wijnhoven S. Leuven R. S. E. W., Ragas A. M. J. & Hendriks A. J., 2008. Spatial distribution and internal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River. Environmental Pollution 151: 17-26. DOI: 10.1016/j.envpol.2007.03.007CrossrefWeb of ScienceGoogle Scholar

  • Taylor M., 1996. The variability of heavy metals in floodplain sediments: a case study from Mid - Wales. Catena 28: 71-87. DOI: 10.1016/S0341-8162(96)00026-4CrossrefGoogle Scholar

  • Tessier A., Campbell P. G. & Bisson M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51: 844-851.Google Scholar

  • Walling D. E. & Owens P. N., 2003 The role of overbank floodplain sedimentation in catchment contaminant budgets. Hydrobiologia 494: 83-91. DOI: 10.1023/A:1025489526364CrossrefGoogle Scholar

  • Vandecasteele B., Samyn J., Quataert P., Muys B. & Tack F. M. G., 2004. Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils. Environmental Pollution 129: 363-375. DOI: 10.1016/j.envpol.2003.12.007CrossrefGoogle Scholar

  • Van Gestel C. A. M., 2008. Physico-chemical and biological parameters determine metal bioavaiability in soils. Science of the Total Environment 406: 385-395. DOI: 10.1016/j.scitotenv.2008.05.050CrossrefWeb of ScienceGoogle Scholar

  • Zhao Y., Marriott S., Rogers J. & Iwugo K., 1999. A preliminary study of heavy metal distribution on the floodplain of the River Severn, UK, by a single flood event. Science of the Total Environment 243/244: 219-231. DOI: 10.1016/S0048-9697(99)00386-1CrossrefGoogle Scholar

About the article


Published Online: 2010-04-05

Published in Print: 2010-03-01


Citation Information: Quaestiones Geographicae, ISSN (Print) 0137-477X, DOI: https://doi.org/10.2478/v10117-010-0004-7.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Barbara Walna and Marcin Siepak
Environmental Monitoring and Assessment, 2012, Volume 184, Number 5, Page 3315

Comments (0)

Please log in or register to comment.
Log in