Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quaestiones Geographicae

The Journal of Adam Mickiewicz University

4 Issues per year


CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.258
Source Normalized Impact per Paper (SNIP) 2016: 0.359

Open Access
Online
ISSN
2081-6383
See all formats and pricing
More options …

LAND-COVER MODELLING USING CORINE LAND COVER DATA AND MULTI-LAYER PERCEPTRON

Piotr Dzieszko
Published Online: 2014-03-27 | DOI: https://doi.org/10.2478/quageo-2014-0004

Abstract

Last decades of research have revealed the environmental impacts of Land-Use/Cover Change (LUCC) throughout the globe. Human activities’ impact is becoming more and more pronounced on the natural environment. The key activity in the LUCC projects has been to simulate the syntheses of knowledge of LUCC processes, and in particular to advance understanding of the causes of land-cover change. Still, there is a need of developing case studies regional models to understand LUCC change patterns. The aim of this work is to reveal and describe the main changes in LUCC patterns occurring in Poznań Lakeland Mesoregion according to CORINE Land Cover database. Change analysis was the basis for the identification of the main drivers in land cover changes in the study area. The dominant transitions that can be grouped and modelled separately were identified. Each submodel was combined with all submodels in the final change prediction process. Driver variables were used to model the historical change process. Transitions were modelled using multi-layer perceptron (MLP) method. Using the historical rates of change and the transition potential model scenario for year 2006 was predicted. Corine Land Cover 2006 database was used for model validation.

Keywords: Land-Use/Land-Cover (LULC); Land-cover change; GIS; Spatial Model; Landscape; CORINE Land Cover

References

  • Agarwal C., Green G.M., Grove J.M., Evans T.P., Schweik C.M., 2001. A review and assessment of land use change models: Dynamics of space, time, and human choice. Center for the Study of Institutions, Population, and Environmental Change, Indiana University and USDA Forest Service, Bloomington and South Burlington.Google Scholar

  • Atkinson P., Tatnall A., 1997. Neural networks in remote sensing. International Journal of Remote Sensing 18(4): 699-709.CrossrefGoogle Scholar

  • Barredo J.I., Kasanko M., McCormick N., Lavalle C., 2003. Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape Urban Plan. 64: 145-160.CrossrefGoogle Scholar

  • Briassoulis H., 2000. Analysis of land use change: Theoretical and modeling approaches. In: S. Loveridge (ed.), The web book of regional science http://www.rri.wvu.edu/regscweb.htm. West Virginia University, Morgantown Google Scholar

  • Brown D.G., Lusch D.P., Duda K.A. 1998. Supervised classification of glaciated landscape types using digital elevation data. Geomorphology 21(3-4): 233-250.CrossrefGoogle Scholar

  • Burrough P.A., McDonnell R.A., 1998. Principles of Geographical Information Systems. Oxford University Press, Oxford, 333 p.Google Scholar

  • Carstensen L.W., 1987. A Measure of Similarity for Cellular Maps, The American Cartographer 14(4): 345-358.CrossrefGoogle Scholar

  • Ciołkosz A., Bielecka E., 2005. Pokrycie terenu w Polsce; Bazy danych CORINE Land Cover, Biblioteka Monitoringu Środowiska, Warszawa.Google Scholar

  • Cohen J., 1968. Weighed kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin 70 (4): 213-220.CrossrefGoogle Scholar

  • Czyż T., 2000. Zróżnicowanie regionalne i nowa organizacja terytorialna Polski. In: Ilnicki, D., Ciok, S. (Eds.), Przekształcenia regionalnych struktur funkcjonalno-przestrzennych, Wrocław, pp. 55-69.Google Scholar

  • Drummond S., Joshi A., Sudduth K. 1998. Application of neural networks: precision farming. IEEE Transactions on Neural Networks, 211-215.Google Scholar

  • Eastman J.R., 2012. Idrisi Selva Manual. Clark University, Worcester, 324 p.Google Scholar

  • EEA [European Environmental Agency], 2013. CORINE Land Cover database. Online: http://www.eea.europa.eu/data-and-maps (accessed 1 March 2013). European Commission, 1993. CORINE Land cover map and technical guide. European Union Directorate-General Environment, Nuclear Safety and Civil Protection. Luxembourg.Google Scholar

  • Evans B.J., 1997. Dynamic display of spatial data-reliability: does it benefit the map user? Computers, Geosciences. 23 (4): 409-422.Google Scholar

  • Feranec J., Jaffrain G., Soukup T., Hazeu G., 2010. Determining changes and flows in European landscapes 1990-2000 using CORINE land cover data. Applied Geography 30(1): 19-35.Web of ScienceGoogle Scholar

  • Foley J., Defries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Chapin F.S., Coe M.T., Daily G.C., Gibbs H.K., Helkowski J.H., Holloway T., Howard E., Kucharik C.J., Monfreda, C., Patz J., Prentice C., Ramankutty N., Snyder P.K., 2005. Global consequences of land use. Science (New York, N.Y.) 309(5734): 570-574.Google Scholar

  • Fukushima K., Miyake S., Takayuki 1983. Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, SMC 13(5): 826-834.Google Scholar

  • Haase D., Schwarz N., 2009. Simulation models on human nature interactions in urban landscapes: a review including spatial economics, system dynamics, cellular automata and agent-based approaches. Living Reviews in Landscape Research 3.Google Scholar

  • Kolendowicz L., Bednorz E., 2010. Topoclimatic differentiation of the area of the Słowiński National Park, northern Poland. Quaestiones Geographicae 29(1): 49-56.Google Scholar

  • Lambin E.F., Turner B.L., Geist H.J., Agbola S.B., Angelsen A., Bruce J.W., Coomes O.T., Dirzo R., Fischer G., Folke C., George P.S., Homewood K., Imbernon J., Leemans R., Li, X., Moran E.F., Mortimore M., Ramakrishnan P.S., Richards J.F., Skånes H., Will S., Stone G.D., Svedin U., Veldkamp T.A., Vogel C., Xu J., 2001. The causes of land Global Environmental Change 11(4): 261-269.Google Scholar

  • Lee C.L., Huang S.L., Chan S.L., 2008. Biophysical and system approaches for simulating land-use change. Landscape and Urban Planning 86(2): 187-203. doi:10.1016/j. landurbplan.2008.02.006CrossrefWeb of ScienceGoogle Scholar

  • Łowicki D. 2008. Land use changes in Poland during transformation: Case study of Wielkopolska region. Landscape and Urban Planning 87(4): 279-288.CrossrefWeb of ScienceGoogle Scholar

  • Łowicki D., Mizgajski A., 2005. Zmiany krajobrazu kulturowego Wielkopolski w okresie transformacji i opisujące je kategorie użytkowania terenu (Changes in the cultural landscape of Wielkopolska in the transformation period (1989-2000) and land use categories determining them). Przegląd Geograficzny 77(4): 551-568.Google Scholar

  • Macias A., Dryjer M., 2010. Forest cover dynamics in the city of Poznań from 1830 to 2004. Quaestiones Geographicae 29(3): 47-57.Google Scholar

  • Mackiewicz A., Parysek J.J., Ratajczak W., 1979. A multivariate study of Poland’s socio-economic spatial structure in 1975: a principal components analysis with eigenvalues obtained using modified Q R algorithm. Quaestiones Geographicae 79(5).Google Scholar

  • Marfai M.A., 2011. Impact of coastal inundation on ecology and agricultural land use case study in central Java, Indonesia. Quaestiones Geographicae 30(3): 19-32.Google Scholar

  • North M.J., Macal C.M., 2007. Managing business complexity: Discovering strategic solutions with agent-based modelling and simulation. New York: Oxford University Press.Google Scholar

  • Ott L., Larson R.F., Mendenhall W., 1983. Statistics: A Tool for the Social Sciences. Boston: Duxbury Press.Google Scholar

  • Parker D.C., Berger T., Manson S.M., 2002. Agent-based models of land-use and land-cover change. Report and Review of an International Workshop, October 4-7, 2001. LUCC Report Series No. 6, 124 p.Google Scholar

  • Parker D.C., Manson S.M., Janssen M.A., Hoffman M., Deadman P., 2003. Multi-agent systems for the simulation of land-use and land cover change: A review. Annals of the Association of American Geographers 93: 314-337.CrossrefGoogle Scholar

  • Pijanowski B.C., Brown D.G., Shellito B.A., Manik G.A., 2002. Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Computers, Environment and Urban Systems 26(6): 553-575.CrossrefGoogle Scholar

  • Pontius R.G., 2000. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering, Remote Sensing 66(8): 1011-1016.Google Scholar

  • Pontius R.G., 2002. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogrammetric Engineering, Remote Sensing 68(10): 1041-1049.Google Scholar

  • Pontius R.G., Suedmeyer B., 2004. Components of agreement in categorical maps at multiple resolutions. In: R.S. Lunetta, J.G. Lyon (eds), Remote Sensing and GIS Accuracy Assessment p. 233-251. Chapter 17 CRC Press, Boca Raton FL.Google Scholar

  • Ritter N., Logan T., Bryant N., 1988. Integration of neural network technologies with geographic information systems. Proceedings of the GIS symposium: integrating technology and geoscience applications (pp. 102-103). Denver, Colorado. United States Geological Survey, Washington, DC.Google Scholar

  • Rosenfield G.H., Fitzpatrick K.L., 1986. A Coefficient of Agreement as a Measure of Thematic Classification Accuracy. Photogrammetric Engineering and Remote Sensing 52(2): 223-227.Google Scholar

  • Rumelhart D., Hinton G., Williams R., 1986. Learning internal representations by error propagation. In: D.E. Rumelhart, J.L. McClelland (eds), Parallel distributed processing: explorations in the microstructures of cognition (Vol. 1; pp. 318-362). Cambridge: MIT Press.Google Scholar

  • Sangermano F., Eastman J.R., Zhu H., 2010. Similarity weighted instance based learning for the generation of transition potentials in land change modeling. Transactions in GIS 14(5): 569-580.Google Scholar

  • Schaldach R., Priess A., 2008. Integrated Models of the Land System: A Review of Modelling Approaches on the Regional to Global Scale. Living Reviews in Landscape Research (2) 1-34.Google Scholar

  • Schmit C., Rounsevell M.D.A., La Jeunesse I., 2006. The limitations of spatial land use data in environmental analysis. Environmental Science, Policy 9(2): 174-188.CrossrefGoogle Scholar

  • Schweitzer C., Priess J.A., Das S., 2011. A generic framework for land-use modelling. Environmental Modelling, Software 26(8): 1052-1055.Google Scholar

  • Skapura D., 1996. Building neural networks. New York: ACM Press.Google Scholar

  • Szlachta J., 1993. Rozwój regionalny Polski w warunkach transformacji gospodarczej, Warszawa.Google Scholar

  • Szpikowski J., 2002 Contemporary processes of soil erosion and the transformation of the morphology of slopes in agricultural use in the postglacial catchment of the Chwalimski Potok (upper Parseta, Drawskie Lakeland). Quaestiones Geographicae 22: 79-90.Google Scholar

  • Veldkamp A., Lambin E.F., 2001. Predicting land-use change: Editorial. Agriculture Ecosystem Environment 85(1-3): 1-6.Google Scholar

  • Verburg P.H., Veldkamp A., 2005 Editorial: Spatial modeling to explore land use dynamics. International Journal of Geographical Information Science 19: 99-102.Google Scholar

  • Wang S.H., Huang S.L., William W., Budd W.W., 2012. Integrated ecosystem model for simulating land use allocation. Ecological Modelling 227: 46-55.Google Scholar

  • Willems E., Vandevoort C.,Willekens A., Buffaria B., 2000. Landscape and land cover diversity index. Online: http://ec.europa.eu/agriculture/publi/landscape (accessed 1 August 2013).Google Scholar

  • Zwoliński Zb. (ed.), 2012. GIS - teledetekcja środowiska (GIS - remote sensing of the environment]), Bogucki Wyd. Naukowe, Poznań. Google Scholar

About the article

Published Online: 2014-03-27

Published in Print: 2014-03-01


Citation Information: Quaestiones Geographicae, ISSN (Print) 0137-477X, DOI: https://doi.org/10.2478/quageo-2014-0004.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Omar Hamdy, Shichen Zhao, Taher Osman, Mohamed Salheen, and Youhansen Eid
Geosciences, 2016, Volume 6, Number 4, Page 43
[2]
Katarzyna Giełda-Pinas, Piotr Dzieszko, Zbigniew Zwoliński, and Arika Ligmann-Zielińska
Quaestiones Geographicae, 2015, Volume 34, Number 3
[3]
Hassan Fathizad, Noredin Rostami, and Marzban Faramarzi
Environmental Monitoring and Assessment, 2015, Volume 187, Number 10
[4]
Dimitrios Triantakonstantis and Demetris Stathakis
Geocarto International, 2015, Volume 30, Number 10, Page 1092

Comments (0)

Please log in or register to comment.
Log in