Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quaestiones Geographicae

The Journal of Adam Mickiewicz University

4 Issues per year


CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.258
Source Normalized Impact per Paper (SNIP) 2016: 0.359

Open Access
Online
ISSN
2081-6383
See all formats and pricing
More options …

Regional Hazard Analysis For Use In Vulnerability And Risk Assessment

Fotios Maris
  • Corresponding author
  • Democritus University, Department of Forestry and Management of the Environment and Natural Resources, Orestiada, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kyriaki Kitikidou
  • Democritus University, Department of Forestry and Management of the Environment and Natural Resources, Orestiada, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Spyridon Paparrizos / Konstantinos Karagiorgos
  • University of Natural Resources and Life Sciences, Institute of Mountain Risk Engineering, Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simeon Potouridis
  • Democritus University, Department of Forestry and Management of the Environment and Natural Resources, Orestiada, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sven Fuchs
  • University of Natural Resources and Life Sciences, Institute of Mountain Risk Engineering, Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/quageo-2015-0026

Abstract

A method for supporting an operational regional risk and vulnerability analysis for hydrological hazards is suggested and applied in the Island of Cyprus. The method aggregates the output of a hydrological flow model forced by observed temperatures and precipitations, with observed discharge data. A scheme supported by observed discharge is applied for model calibration. A comparison of different calibration schemes indicated that the same model parameters can be used for the entire country. In addition, it was demonstrated that, for operational purposes, it is sufficient to rely on a few stations. Model parameters were adjusted to account for land use and thus for vulnerability of elements at risk by comparing observed and simulated flow patterns, using all components of the hydrological model. The results can be used for regional risk and vulnerability analysis in order to increase the resilience of the affected population.

Keywords: hazard analysis; operational analysis; risk assessment; vulnerability

References

  • Baird D., Rubach M., Van den Brinkt P., 2008. Trait-based ecological risk assessment (TERA): The new frontier? Integrated Environmental Assessment and Management 4(1): 2–3.Google Scholar

  • Birkmann J., Cardona O., Carreño M., Barbat A., Pelling M., Schneiderbauer S., Kienberger S., Keiler M., Alexander D., Zeil P., Welle T., 2013. Framing vulnerability, risk and societal responses: the MOVE framework. Natural Hazards 67(2): 193–211.CrossrefWeb of ScienceGoogle Scholar

  • Cutter S., Mitchell J., Scott M., 2000. Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers 90(4): 713–737.CrossrefGoogle Scholar

  • FEMA, 1997. Multi-hazard Identification and Risk Assessment. Government Printing Office, Washington. http://www.fema.gov/pdf/fhm/mhira-in.pdf. Accessed 3 March 2014.

  • Field C., Barros V., Dokken D., Mach K., Mastrandrea M., Bilir T., Chatterjee M., Ebi K., Estrada Y., Genova R., Girma B., Kissel E., Levy A., MacCracken S., Mastrandrea P., White L. (eds)., 2014. Climate Change 2014: Impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge.Google Scholar

  • Fuchs S., 2009. Susceptibility versus resilience to mountain hazards in Austria – Paradigms of vulnerability revisited. Natural Hazards and Earth System Sciences 9(2): 337–352.Web of ScienceGoogle Scholar

  • Fuchs S., Kuhlicke C., Meyer V., 2011. Editorial for the special issue: vulnerability to natural hazards – the challenge of integration. Natural Hazards 58(2): 609–619.Web of ScienceCrossrefGoogle Scholar

  • Govindaraju R., Rao A. (eds)., 2000. Artificial neural networks in hydrology. Springer, Dordrecht.Google Scholar

  • IBM, 2011. SPSS Modeler 14.2 Modeling Nodes. IBM Corporation.Google Scholar

  • Kaufman, L. Rousseeuw, P., 2005. Finding groups in data: An introduction to cluster analysis. John Wiley and Sons, USA.Google Scholar

  • Kohonen T., 1982. Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43(1): 59–69.CrossrefGoogle Scholar

  • Kuhlicke C., 2013. Resilience: a capacity and a myth: findings from an in-depth case study in disaster management research. Natural Hazards 67(1): 61–76.CrossrefWeb of ScienceGoogle Scholar

  • Kumpulainen S., 2006. Vulnerability Concepts in Hazard and Risk Assessment. Geological Survey of Finland, Special Paper 42: 65–74.Google Scholar

  • Kurgan L., Cios K., 2001. Discretization Algorithm that Uses Class-Attribute Interdependence Maximization. In: Proceedings of the 2001 International Conference on Artificial Intelligence (IC-AI 2001), Las Vegas, Nevada.Google Scholar

  • Menoni S., Molinari D., Parker D., Ballio F., Tapsell S., 2012. Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Natural Hazards 64(3): 2057–2082.CrossrefWeb of ScienceGoogle Scholar

  • OAS – Dept. of Regional Development and Environment, 1991. Chapter 6 – Multiple Hazard Mapping. In: Primer of Natural Hazard Management in Integrated Regional Development Planning.Google Scholar

  • Papathoma-Köhle M., Kappes M., Keiler M., Glade T., 2011. Physical vulnerability assessment for alpine hazards: state of the art and future needs. Natural Hazards 58(2): 645–680.CrossrefGoogle Scholar

  • Parry M., Canziani O., Palutikof J. (eds)., 2007. Climate change 2007. Impacts, adaptation and vulnerability: Working Group II contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar

  • Ratanamahatana C., 2003. CloNI: Clustering of √N-Interval discretization. In: Proceedings of the 4th International Conference on Data Mining Including Building Application for CRM & Competitive Intelligence, Rio de Janeiro, Brazil.Google Scholar

  • Stocker T., Qin D., Plattner G., Tignor M., Allen S., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. (eds)., 2013. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar

  • UN/ISDR, 2015. Sendai Framework for Disaster Risk Reduction 2015–2030. United Nations, GenevaGoogle Scholar

  • Varnes D., 1984. Landslide Hazard Zonation: A review of Principles and Practice. United Nations Educational Scientific and Cultural, USA.Google Scholar

  • Water Development Department. http://www.moa.gov.cy/moa/wdd/Wdd.nsf/index_en/index_en?OpenDocument

  • WGS – Word Geodetic System, 1984. National Geospatial – Intelligence Agency. https://www1.nga.mil

  • Zachariadis T., 2012. Climate Change in Cyprus: Impacts and Adaptation Policies. Cyprus Economic Policy Review 6(1): 21–37.Google Scholar

About the article

Received: 2015-04-11

Revised: 2015-08-05

Published Online: 2015-12-30

Published in Print: 2015-09-01


Citation Information: Quaestiones Geographicae, ISSN (Online) 2081-6383, DOI: https://doi.org/10.1515/quageo-2015-0026.

Export Citation

© 2015 Faculty of Geographical and Geological Sciences, Adam Mickiewicz University. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in