Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quaestiones Geographicae

The Journal of Adam Mickiewicz University

4 Issues per year

CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.258
Source Normalized Impact per Paper (SNIP) 2016: 0.359

Open Access
See all formats and pricing
More options …
Volume 34, Issue 3

Spatial Distribution And Synoptic Conditions Of Snow Accumulation And Snow Ablation In The West Siberian Plain

Ewa Bednorz / Joanna Wibig
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/quageo-2015-0029


The mean duration of snow coverage in the West Siberian Plain is approximately eight months in the north to about five months in the south. While the period of intense snow melting is short (one or two months between March and May), snow accumulation persists for most of the cold season. Snow accumulation is associated with negative anomalies of sea level pressure, which means increased cyclonal activity and weaker than normal Siberian High. Much lower anomalies of sea level pressure occur during snow ablation. This suggests smaller influence of air circulation on snow cover reduction in spring.

Keywords: snow accumulation; snow ablation; West Siberian Plain; air circulation


  • Allen R.J., Zender C.S., 2011. Forcing of the Arctic Oscillation by Eurasian Snow Cover. Journal of Climate 24: 6528–6539.CrossrefGoogle Scholar

  • AMAP, 2012. Arctic Climate Issues 2011 Changes in Arctic Snow, Water, Ice and Permafrost. SWIPA 2011 Overview Report Arctic Monitoring and Assessment Programme (AMAP), Oslo xi + 97pp.Google Scholar

  • Barnston A.G., Livezey R.E., 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review 115: 1083–1126.CrossrefGoogle Scholar

  • Bednorz E., 2004. Snow cover in eastern Europe in relation to temperature, precipitation and circulation. International Journal of Climatology 24: 591–601.CrossrefGoogle Scholar

  • Bednorz E., Wibig J., 2008. Snow depth in eastern Europe in relation to circulation patterns. Annals of Glaciology 48: 135–149.CrossrefGoogle Scholar

  • Birkeland K.W., Mock C.J., 1996. Atmospheric circulation patterns associated with heavy snowfall events, Bridger Bowl, Montana, USA. Mountains Research and Development 16: 281–286.Google Scholar

  • Brown R.D., 2000. Northern Hemisphere snow cover variability and change, 1915–97. Journal of Climate 13: 2339–2355.CrossrefGoogle Scholar

  • Chen S.J., Zhang P.-Z., 1996. Climatology of Deep Cyclones over Asia and the Northwest Pacific. Theoretical and Applied Climatology 54: 139–146.CrossrefGoogle Scholar

  • Clark M.P., Serreze M.C., Robinson A.D., 1999. Atmospheric controls on Eurasian snow extent. International Journal of Climatology 19: 27–40.CrossrefGoogle Scholar

  • Cohen J., Jones J., 2011. A new index for more accurate winter predictions. Geophysical Research Letters 38: L21701.CrossrefGoogle Scholar

  • Cohen J., Entekhabi D., 1999. Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophysical Research Letters 26: 345–348.dCrossrefGoogle Scholar

  • Dayan U., Tubia A., Levy I., 2012. On the importance of synoptic classification methods with respect to environmental phenomena. International Journal of Climatology 32: 681–694.CrossrefGoogle Scholar

  • Dewey K.F., 1977. Daily maximum and minimum temperature forecasts and the influence of snow cover. Monthly Weather Review 105: 1594–1597.CrossrefGoogle Scholar

  • Esteban P., Jones P.D., Martin-Vide J, Mases M, 2005. Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. International Journal of Climatology 25: 319–329.CrossrefGoogle Scholar

  • Falarz M., 2007. Snow cover variability in Poland in relation to the macro- and mesoscale atmospheric circulation in the 20th century. International Journal of Climatology 27: 2069–2081.CrossrefGoogle Scholar

  • Foster J.L., 1989. The significance of the date of snow disappearance on the Arctic tundra as a possible indicator of climate change. Arctic, Antarctic and Alpine Research 21: 60–70.CrossrefGoogle Scholar

  • Gong D.-Y., Ho C.-H., 2002. The Siberian High and climate change over middle to high latitude Asia. Theoretical and Applied Climatology 72: 1–9.CrossrefGoogle Scholar

  • Gutzler D.S., Rosen R.D., 1992. Interannual variability of wintertime snow-cover across the Northern Hemisphere. Journal of Climate 5: 1441–1447.CrossrefGoogle Scholar

  • Hoy A, Sepp M, Matschullat J, 2013. Large-scale atmospheric circulation forms and their impact on air temperature in Europe and northern Asia. Theoretical and Applied Climatology 113: 643–658.CrossrefGoogle Scholar

  • Iijima Y., Masuda K., Ohata T., 2007. Snow disappearance in eastern Siberia and its relationship to atmospheric influences. International Journal of Climatology 27: 169–177.CrossrefGoogle Scholar

  • Jacobi H.-W., 2012. Snow: a reliable indicator for global warming in the future? Environmental Research Letters 7: 011004.CrossrefGoogle Scholar

  • Jeong J.-H., Ou T., Linderholm H.W., Kim B.-M., Kim S.-J., Kug J.-S., Chen D., 2011. Recent recovery of the Siberian High intensity. Journal of Geophysical Research 116: D23102.CrossrefGoogle Scholar

  • Kalkstein L.S., Tan G., Skindlov J.A., 1987. An evaluation of three clustering procedures for use in synoptic climatological classifications. Journal of Climatology and Applied Meteorology 26: 717–730.CrossrefGoogle Scholar

  • Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., et al, 1996. The NMC/NCAR 40-Year Reanalysis Project. Bulletin of American Meteorological Society 77: 437–471.Google Scholar

  • Konig W., Sausen R., Sielman F., 1993. Objective identification of cyclones in GCM simulations. Journal of Climate 6: 2217–2231.CrossrefGoogle Scholar

  • McCabe G.J., Clark M.P., Serreze M., 2001. Trends in Northern Hemisphere surface cyclone frequency and intensity. Journal of Climate 14: 2763–2768.CrossrefGoogle Scholar

  • Meehl G.A., Stocker T.F., Collins W., Friedlingstein P., Gaye A., Gregory J., Kitoh A., Knutti R., Murphy J., Noda A,. et al, 2007. Global climate projections In: Solomon S, et al (eds) Climate Change 2007: the physical science basis. London: Cambridge University Press, pp 747–845.Google Scholar

  • Morinaga Y., Tian S.-F., Shinoda M., 2003. Winter snow anomaly and atmospheric circulation in Mongolia. International Journal of Climatology 23: 1627–1636.CrossrefGoogle Scholar

  • Panagiotopoulos F., Shahgedanova M., Hannachi A., Stephenson D.B., 2005. Observed Trends and Teleconnections of the Siberian High: A Recently Declining Center of Action. Journal of Climate 18: 1411–1422.CrossrefGoogle Scholar

  • Peings, Y., Brun E., Mauvais V., Douville H., 2013., How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophysical Research Letters 40, 183–188, doi: 10.1029/2012GL054083.CrossrefGoogle Scholar

  • Popova V., 2007. Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes. International Journal of Climatology 27: 1721–1733.CrossrefGoogle Scholar

  • Przybylak R., 2000. Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic. International Journal of Climatology 20: 587–614.CrossrefGoogle Scholar

  • Räisänen J., 2008. Warmer climate: less or more snow? Climate Dynamics 30: 307–319.CrossrefGoogle Scholar

  • Rikiishi K., Sakakibara J., 2004. Seasonal cycle of the snow coverage in the former Soviet Union and its relation with atmospheric circulation Annals of Glaciology 38: 106–114.CrossrefGoogle Scholar

  • Robinson D.A., Kukla G., 1985. Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. Journal of Applied Meteorology and Climatology 24: 402–411.CrossrefGoogle Scholar

  • Robock A., 1980. The seasonal cycle of snow cover, sea ice and surface albedo. Monthly Weather Review 108: 267–285.CrossrefGoogle Scholar

  • Saito K., Cohen J., 2003. The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophysical Research Letters 30: 1302.CrossrefGoogle Scholar

  • Shinoda M., Utsugi H., Morishima W., 2001. Spring snow-disappearance timing and its possible influence on temperature fields over central Eurasia. Journal of Meteorological Society of Japan 79: 37–59.Google Scholar

  • Tachibana Y., 1995. A statistical study of the snowfall distribution on the japan Sea side of Hokkaido and its relation to synoptic-scale and meso-scale environments. Journal of Meteorological Society of Japan 73: 697–715.Google Scholar

  • Ueda H., Shinoda M., Kamahori H., 2003. Spring northward retreat of Eurasian snow cover relevant to seasonal and interannual variations of atmospheric circulation. International Journal of Climatology 23: 615–629.CrossrefGoogle Scholar

  • Wagner A.J., 1973. The influence of average snow depth on monthly mean temperature anomaly. Monthly Weather Review 101: 624–626CrossrefGoogle Scholar

  • Walsh J.E., Tucek D.R., Peterson M.R., 1982. Seasonal snow cover and short-term climatic fluctuations over the United States. Monthly Weather Review 110: 1474–1485.CrossrefGoogle Scholar

  • Ward J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of American Statistical Association 58: 236–244.CrossrefGoogle Scholar

  • Yabuki H., Park H., Kawamoto H., Suzuki R., Razuvaev V.N., Bulygina O.N., Ohata T., 2011. Baseline Meteorological Data in Siberia (BMDS) Version 50 RIGC, JAMSTEC Yokosuka, Japan, distributed by CrDAP, Digital media.Google Scholar

  • Yarnal B., 1993. Synoptic Climatology in Environmental Analysis. Belhaven Press: LondonGoogle Scholar

  • Yarnal B., Comrie A.C., Frakes B., Brown D.P., 2001. Developments and prospects in synoptic climatology. International Journal of Climatology 21: 1923–1950CrossrefGoogle Scholar

  • Ye H., 2000. Decadal variability of Russian winter snow accumulation and its associations with Atlantic sea surface temperature anomalies. International Journal of Climatology 20: 1709–1728.CrossrefGoogle Scholar

  • Ye H., 2001a. Quasi-biennial and quasi-decadal variations in snow accumulation over northern Eurasia and their connections to the Atlantic and Pacific Oceans. Journal of Climate 14: 4573–4584.CrossrefGoogle Scholar

  • Ye H., 2001b. Increases in snow season length due to earlier first snow and later last snow dates over north central and northwest Asia during 1937–1994. Geophysical Research Letters 28: 551–554.Google Scholar

  • Ye H., Ellison M., 2003. Changes in transitional snowfall season length in northern Eurasia. Geophysical Research Letters 30: 1252.CrossrefGoogle Scholar

  • Ye H., Cho H.R., Gustafson PE, 1998. The changes in Russian winter snow accumulation during 1936–83 and its spatial patterns. Journal of Climate 11: 856–863.CrossrefGoogle Scholar

  • Ye H., Yang D., Zhang T., Zhang X., Ladochy S., Ellison M., 2004. The impact of climatic conditions on seasonal river discharges in Siberia. Journal of Hydrometeorology 5: 286–295.CrossrefGoogle Scholar

About the article

Received: 2014-12-29

Revised: 2015-08-15

Published Online: 2015-12-30

Published in Print: 2015-09-01

Citation Information: Quaestiones Geographicae, Volume 34, Issue 3, Pages 5–15, ISSN (Online) 2081-6383, DOI: https://doi.org/10.1515/quageo-2015-0029.

Export Citation

© 2015 Faculty of Geographical and Geological Sciences, Adam Mickiewicz University. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in