Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quaestiones Geographicae

The Journal of Adam Mickiewicz University

4 Issues per year

CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.258
Source Normalized Impact per Paper (SNIP) 2016: 0.359

Open Access
See all formats and pricing
More options …
Volume 34, Issue 3


Two Strategies Of Agent-Based Modelling Application For Management Of Lakeland Landscapes At A Regional Scale

Katarzyna Giełda-Pinas / Piotr Dzieszko / Zbigniew Zwoliński / Arika Ligmann-Zielińska
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/quageo-2015-0031


This work presents two different strategies of ABM for management of selected lakeland landscapes and their impact on sustainable development. Two different lakeland research areas as well as two different sets of agents and their decision rules were compared. In Strategy 1 decisions made by farmers and their influence on the land use/cover pattern as well as the indirect consequence of phosphorus and nitrogen delivery to the water bodies were investigated. In this strategy, a group of farmer agents is encouraged to participate in an agri-environmental program. The Strategy 2 combines the decisions of farmers, foresters and local authorities. The agents in the model share a common goal to produce a spatial plan. The land use/cover patterns arising from different attitudes and decision rules of the involved actors were investigated. As the basic spatial unit, the first strategy employed a landscape unit, i.e. lake catchment whereas the second strategy used an administrative unit, i.e. commune. Both strategies resulted in different land use/cover patterns and changes, which were evaluated in terms of sustainability policy. The main conclusion for Strategy 1 is that during 5 years of farmer’s participation in the agri-environmental program, there was significant decrease of nutrient leaching to the lake. The main conclusion for Strategy 2 should be stated that cooperating of the agents is better for the natural environment than the competitions between them. In both strategies, agents’ decisions influence the environment but different spatial units of analysis express this environment.

Keywords: agent-based modelling (ABM); land use/cover change (LUCC); geographical information systems (GIS); decision-making modelling; lakeland landscapes; Poland


  • Bajkiewicz-Grabowska E., 2008. Lake geoecosystem as an indicator of the rate of natural eutrophication of water reservoirs. Limnological Review 8(1–2): 9–12.Google Scholar

  • Berger T., 2001. Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics 25(2–3): 245–260.CrossrefGoogle Scholar

  • Bremigan M.T., Soranno P.A., Gonzalez M.J., Bunnell D.B., Arend, K.K., Renwick, W.H., Stein, R.A., Vanni, M.J., 2008. Hydrogeomorphic features mediate the effects of land use/cover on reservoir productivity and food webs. Limnology and Oceanography 53(4): 1420–1433.CrossrefWeb of ScienceGoogle Scholar

  • Brown D.G., 2006. Agent-Based Models. In: H. Geist (ed.), The Earths Changing Land: An Encyclopedia of Land-Use and Land-Cover Change. Greenwood Publishing Group, Westport: 7–13.Google Scholar

  • Cheruvelil K.S., Soranno P.A., Bremigan M.T., Wagner T., Martin S.L., 2008. Grouping lakes for water quality assessment and monitoring: The roles of regionalization and spatial scale. Environmental Management 41(3): 425–440.CrossrefWeb of ScienceGoogle Scholar

  • Conte R., Hegselmann R., Terna P., 1997. Simulating social phenomena Springer-Verlag, Berlin.Google Scholar

  • Couclelis H., 1987. Of mice and men: what rodent populations can teach us about complex spatial dynamics. Environment and Planning A 20: 99–109.CrossrefGoogle Scholar

  • Dzieszko P., 2014. Land-cover modelling using CORINE Land Cover data and multi-layer perceptron. Quaestiones Geographicae 33(1): 5–22.CrossrefGoogle Scholar

  • Dzieszko P., Bartkowiak K., Giełda-Pinas K., 2013. Agenci w modelowaniu agentowym (ABM). Roczniki Geomatyki 4(61): 17–23.Google Scholar

  • Eastman J.R., 2012. Idrisi Selva Manual. Clark University, Worcester, pp. 324.Google Scholar

  • EEA [European Environment Agency], 2006. CORINE Land Cover. http://www.eea.europa.eu/; accessed 12 December 2014.

  • Epstein J.M., 2008. Why Model? Journal of Artificial Societies and Social Simulation Vol. 11, No. 4: 12.Google Scholar

  • Epstein J.M., Axtell, R., 1996. Growing artificial societies: Social science from the ground up. Brookings Institution Press, Washington DC.Google Scholar

  • Ferench B., Dawidek J., 2010. Spatial variation of basin supply as a factor of water quality in a shallow, flow-through lake. Limnological Review 10(3–4): 127–132.Google Scholar

  • Foley J.A., DeFries R., Anser G.P., Barford C., Bonann G., Carpenter S.R., Chapin F.S., Coe M.T., Daily G.C., Gibbs H.K. 2005. Global consequences of land use. Science 309(5734): 570–574.CrossrefGoogle Scholar

  • Giełda-Pinas K. 2012. Waloryzacja przyrodnicza krajobrazu Pojezierza Gnieźnieńskiego. Problemy Ekologii Krajobrazu 33: 77–85.Google Scholar

  • Giełda-Pinas K., 2015. Symulacje zmian pokrycia terenu i użytkowania ziemi z wykorzystaniem modelowania agentowego. Roczniki Geomatyki XIII 1(61): 7–19.Google Scholar

  • Giełda-Pinas K., Ligmann-Zielińska A., Zwolinski Z., 2015 (in press). Spatio-temporal changes of land use and land cover simulated by agent-based modelling, Gniezno Lakeland District, Poland. Limnological Rewiev 15.Google Scholar

  • Goodchild M.F., 2005. GIS, Spatial Analysis, and Modelling Overview. In: D.J. Maguire, M. Batty, M.F. Goodchild (eds), GIS, Spatial Analysis and Modeling. ESRI Press, Redlands: 1–18.Google Scholar

  • GUS [Główny Urząd Statystyczny], 2015. Bank Danych Lokalnych. Online: http://stat.gov.pl/bdl/app/strona.html?p_name=indeks; accessed 15 May 2015.

  • Hillbricht-Ilkowska A., 2005. Ochrona jezior i krajobrazu pojeziernego – problemy, procesy, perspektywy, Funkcje regionalne i problemy badawcze krajobrazu pojeziernego. Kosmos – Problemy Nauk Biologicznych 54(2–3): 285–302.Google Scholar

  • IMGW [Instytut Meteorologii i Gospodarki Wodnej], 2007. Mapa Podziału Hydrograficznego Polski, 1:50 000. Zakład Hydrografii i Morfologii Koryt Rzecznych, Instytut Meteorologii i Gospodarki Wodnej, Ministerstwo Środowiska, Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej, Warszawa.Google Scholar

  • Itami R.M., 1994. Simulating spatial dynamics: cellular automata theory. Landscape and Urban Planning 30: 27–47.CrossrefGoogle Scholar

  • Janssen M.A., Jager W., 2000. The human actor in ecological economic models. Ecological Economics 35(30): 307–310.Google Scholar

  • Johnson L.B., Richards C., Host G.E., Arthur J.W., 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37: 193–208.CrossrefGoogle Scholar

  • Jones J.R., Knowlton M.F., Obrecht D.V, Cook E.A., 2004. Importance of landscape variables and morphology on nutrients in Missouri reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 61: 1503–1512.Google Scholar

  • Keitt T.H., Urban D.L., Milne B.T., 1997. Detecting critical scales in fragmented landscapes. Conservation Ecology 1(1): 4.Google Scholar

  • Kostrzewski A., 2008. Present state and functioning of lake geoecosystems – methodological and methodical assumptions. Limnological Review 8(1–2): 5–8.Google Scholar

  • Langran G., 1992. Time in Geographic Information Systems. Taylor and Francis, London.Google Scholar

  • Ligmann-Zielinska A., 2009. The impact of risk-taking attitudes on a land use pattern: an agent-based model of residential development. Journal of Land Use Science 4(4): 215–232.Google Scholar

  • Ligtenberg A., Wachowicz M., Bregt A.K., Beulens A., Kettenis D.L., 2004. A design and application of a multi-agent system for simulation of multi-actor spatial planning. Journal of Environmental Management 72(1): 43–55.CrossrefGoogle Scholar

  • Matthews R. B., Gilbert N.G., Roach A., Polhill J.G., Gotts N.M., 2007. Agent-based land-use models: a review of applications. Landscape Ecology 22(10): 1447–1459.CrossrefWeb of ScienceGoogle Scholar

  • Monticino M., Acevedo M., Callicott B., Cogdill T., Lindquist C. 2007. Coupled human and natural systems: A multi-agent-based approach. Environmental Modelling & Software 22(5), 656–663.Google Scholar

  • Myers D., 2001. Introduction to the Symposium: Putting the Future in Planning. Journal of the American Planning Association 67: 365–367.CrossrefGoogle Scholar

  • Parker D.C., Manson S.M., Janssen M.A., Hoffman M.J., Deadman P., 2003. Multi-Agent Systems for the Simulation of Land-Cover Change: A Review. Annals of the Association of American Geographers 93(2): 314–337.CrossrefGoogle Scholar

  • Peuquet D.J., 2005. Time in GIS and Geographical Databases. In: P.A. Longley, M.F. Goodchild, D.J.Maguire, D.W. Rhind (eds), Geographical Information Systems: Principles, Techniques, Management and Applications. Wiley, Hoboken, 91–103.Google Scholar

  • Ptak M., Ławniczak A.E., 2011. Changes in land use in the buffer zone of lake of the Mała Wełna catchment. Limnological Review 12(1): 35–44.Google Scholar

  • Slager K., Ligtenberg A., de Vries B., de Waard R., 2007. Simlandscape: serious gaming in participatory spatial planning. 10th AGILE International Conference on Geographic Information Science, Aalborg University, Denmark.Google Scholar

  • Soranno P.A., Cheruvelil K.S., Webster K.E., Bremigan M.T., Wagner T., Stow C., 2010. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation. BioScience 60(6): 440–454.Web of ScienceCrossrefGoogle Scholar

  • Soranno P.A., Hubler S.L., Carpenter S.R., Lathrop R.C., 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecological Applications 6(3): 865–878.CrossrefGoogle Scholar

  • Soranno, P.A., Webster K.E., Cheruvelil K.S., Bremigan M.T, 2009. The lake landscape-context framework: linking aquatic connections, terrestrial features and human effects at multiple spatial scales. Verhandlungen des Internationalen Verein Limnologie 30(5): 695–700.Google Scholar

  • Strayer D.L., Beighley R.E., Thompson L.C., Brooks S., Nilsson C., Pinay G., Naiman R.J., 2003. Effects of land cover on stream ecosystems: Roles of empirical models and scaling issues. Ecosystems 6: 407–423.CrossrefGoogle Scholar

  • Szpikowski J., 2003. The mechanism of overland flow and wash on slopes in agricultural use on the upper Parsęta catchment. In: A. Kostrzewski, J. Szpikowski (eds) Funkcjonowanie geoekosystemów zlewni rzecznych 3. Obieg wody, uwarunkowania i skutki w środowisku przyrodniczym. Bogucki Wyd. Nauk., Poznań: 261–277.Google Scholar

  • Valbuena D., Verburg P.H., Bregt A.K., Ligtenberg A. 2010. An agent-based approach to model land-use change at a regional scale. Landscape Ecology 25(2): 185–199.CrossrefWeb of ScienceGoogle Scholar

  • Waard R.S., 2005. Simlandscape: een ontwerp en onderzoek ondersteunend systeem voor planning, gebaseerd op de scenariomethode en kadastraal GIS. PhD-thesis, Technical University Eindhoven.Google Scholar

  • Walsh S.E., Soranno, P.A., Rutledge, D.T., 2003. Lakes, Wetlands, and Streams as Predictors of Land Use/Cover Distribution. Environmental Management 31(2): 198–214.CrossrefGoogle Scholar

  • Weiss G., 1999. Multi-agent systems: A modern approach to distributed artificial intelligenc. MA: MIT Press, Cambridge.Google Scholar

  • Zwoliński Zb., 1998. Geoindykatory w badaniach współczesnej dynamiki geosystemów. In: K. Pękala (ed.), Główne kierunki badań geomorfologicznych w Polsce. Stan aktualny i perspektyw. Lublin: 223–227.Google Scholar

About the article

Received: 2015-06-30

Revised: 2015-08-15

Published Online: 2015-12-30

Published in Print: 2015-09-01

Citation Information: Quaestiones Geographicae, Volume 34, Issue 3, Pages 33–50, ISSN (Online) 2081-6383, DOI: https://doi.org/10.1515/quageo-2015-0031.

Export Citation

© 2015 Faculty of Geographical and Geological Sciences, Adam Mickiewicz University. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in