Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Quaestiones Geographicae

The Journal of Adam Mickiewicz University

4 Issues per year


CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.258
Source Normalized Impact per Paper (SNIP) 2016: 0.359

Open Access
Online
ISSN
2081-6383
See all formats and pricing
More options …

Photogrammetric Modelling for Urban Medieval Site Mapping. A Case Study from Curtea de Argeş, Romania

Constantin Nistor / Bogdan Mihai / Liviu Toma / Irina Carlan
Published Online: 2017-09-29 | DOI: https://doi.org/10.1515/quageo-2017-0026

Abstract

Detailed mapping of urban historical sites superposed on natural landforms within built-up areas is a real challenge. Digital photogrammetric techniques meet the requirements for mapping archaeological sites within dense built-up areas. The objectives are to reveal the landform value in medieval site development and to analyse its impact on the landforms. The aim of the present study is to highlight the contribution of geomatics technologies for the evaluation and preservation of historical sites using UAV (Unmanned Aerial Vehicle) imagery and field photos for 3D modelling. Curtea de Argeş medieval site, established on Argeş River terraces and attested since the 13th century, represents the town core for which the specific methodology was applied.

Keywords: urban historical site; UAV photogrammetric flight; Curtea de Argeş; 3D modelling

References

  • Adriansyah D., Busu I., Eva H., Muqtada M., 2015. Geoheritage ss the basis for geotourism development : a case study in Jeli District, Kelantan, Malaysia. Geojournal of Tourism and Geosites 15: 25–43.Google Scholar

  • Aicardi I., Chiabrando F., Grasso N., Lingua A.M., Noardo F., Spanò A., 2016. UAV photogrammetry with oblique images: First analysis on data acquisition and processing. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 835–842. DOI 10.5194/isprsarchives-XLI-B1-835-2016.CrossrefGoogle Scholar

  • Apollonio F.I., Gaiani M., Sun Z., 2013. 3D modeling and data enrichment in digital reconstruction of architectural heritage. XXIV Int. CIPA Symp. XL-5/W2: 43–48. DOI 10.5194/isprsarchives-XL-5-W2-43-2013.CrossrefGoogle Scholar

  • Bouquet M., 1843. Album Valaque, vues et costumes pittoresques de la Valachie dessinés d’après nature (Wallachian Album, views and picturesque costumes of Wallachia drawn from nature). Imp. Lemercier, Paris.Google Scholar

  • Cantzler H., 2003. Improving architectural 3D reconstruction by constrained modelling. University of Edinburgh, Edimburgh.Google Scholar

  • Cârlan I., Dovleac B., 2017. 3D modelling of Arutela Roman Castrum using close-range photogrammetry. Int. J. Conserv. Sci. 8: 35–42.Google Scholar

  • Chan M.A., Godsey H.S., 2016. Lake Bonneville geosites in the urban landscape: Potential loss of geological heritage. In: Oviatt C.G., Shorder J.F. (eds), Lake Bonneville. A scientific update. Developments in Earth Surface Processes 20: 617–633. DOI 10.1016/B978-0-444-63590-7.00023-8.CrossrefGoogle Scholar

  • Clivaz M., Reynard E., 2017. How to integrate invisible geomorphosites in an inventory: a case study in the Rhone River valley (Switzerland). Geoheritage. DOI 10.1007/s12371-017-0222-7.CrossrefGoogle Scholar

  • Constantinescu N., 1984. Curtea de Argeş (1200–1400) asupra începuturilor Ţării Româneşti (Curtea de Argeş 1200–1400, at the dawn of Wallachia history). Editura Academiei Republicii Socialiste România, Bucharest.Google Scholar

  • Curinschi G., 1967. Centrele istorice ale oraşelor (The historical cores of towns). Editura Tehnică, Bucharest.Google Scholar

  • Dadras M., Shafri H.Z.M., Ahmad N., Pradhan B., Safarpour S., 2014. Six decades of urban growth using remote sensing and GIS in the city of Bandar Abbas, Iran. IOP Conf. Ser. Earth Environ. Sci. 20: 12007. DOI 10.1088/1755-1315/20/1/012007.CrossrefGoogle Scholar

  • De Wever P., Baudin F., Pereira D., Cornée A., Egoroff G., Page K., 2016. The importance of geosites and heritage stones in cities – a review. Geoheritage. DOI 10.1007/s12371-016-0210-3CrossrefGoogle Scholar

  • Del Lama E.A., Corte-Bacci D., Martins L., Gloria Motta Garcia M., Dehira K.L., 2015. Urban geotourism and the old bentre of São Paulo City, Brazil. Geoheritage 7: 147–164. DOI 10.1007/s12371-014-0119-7.CrossrefGoogle Scholar

  • Del Monte M., D’Orefice M., Luberti G.M., Marini R., Pica A., Vergari F., 2016. Geomorphological classification of urban landscapes: the case study of Rome (Italy). Journal of Maps 12. DOI 10.1080/17445647.2016.1187977.CrossrefGoogle Scholar

  • Doering M., Blaurock M., Robinson C.T., 2012. Landscape transformation of an Alpine floodplain influenced by humans: Historical analyses from aerial images. Hydrological Processes 26: 3319–3326. DOI 10.1002/hyp.8374.CrossrefGoogle Scholar

  • Erikstad L., Nakrem H.A., Markussen J.A., 2017. Protected geosites in an urban area of Norway. Inventories, values, and management. Geoheritage. DOI 10.1007/s12371-017-0223-6.CrossrefGoogle Scholar

  • Jao F.J., Chu H.J., Tseng Y.H., 2014. Historical image registration and land-use land-cover change analysis. Environments 1(2): 181–189. DOI 10.3390/environments1020181CrossrefGoogle Scholar

  • Mandrut O., 1994. Relieful Subcarpatilor dintre Arges si Argesel (Subcarpathian relief between Arges and Argesel). University of Bucharest, Bucharest.Google Scholar

  • Martin S., Reynard E., Pellitero Ondicol R., Ghiraldi L., 2014. Multi-scale web mapping for geoheritage visualisation and promotion. Geoheritage 6: 141–148. DOI 10.1007/s12371-014-0102-3.Web of ScienceCrossrefGoogle Scholar

  • Mihai B., Nistor C., Toma L., Săvulescu I., 2016. High resolution landscape change analysis with CORONA KH-4B imagery. A case study from Iron Gates Reservoir Area. Environmental Sciences 32: 200–210. DOI 10.1016/j.proenv.2016.03.025.CrossrefGoogle Scholar

  • Mikhail E.M., Bethel J., McGlone J.C., 2001. Introduction to modern photogrammetry. Wiley & Sons, Chichester.Google Scholar

  • Nebiker S., Lack N., Deuber M., 2014. Building change detection from historical aerial photographs using dense image matching and object-based image analysis. Remote Sensing 6: 8310–8336. DOI 10.3390/rs6098310.CrossrefGoogle Scholar

  • Nex F., Remondino F., 2014. UAV for 3D mapping applications: A review. Applied Geomatics 6: 1–15 DOI 10.1007/s12518-013-0120-x.CrossrefGoogle Scholar

  • Osaci-Costache G., 1998. Evolutia orasului Curtea de Arges reflectata in documente cartografice (Evolution of Curtea de Arges city interpreted from cartographic documentes). In: Comunicari de Geografie: 192–197 Editura Universitatii din Bucuresti, Bucharest.Google Scholar

  • Pelfini M., Bollati I., 2014. Landforms and geomorphosites ongoing changes: Concepts and implications for geoheritage promotion. Quaestiones Geographicae 33: 131–143. DOI 10.2478/quageo-2014-0009.CrossrefGoogle Scholar

  • Pica A., Reynard E., Grangier L., Kaiser C., Ghiraldi L., Perotti L., Del Monte, M., 2017. Geoguides, urban geotourism offer powered by mobile application technology. Geoheritage. 18. DOI 10.1007/s12371-017-0237-0.CrossrefGoogle Scholar

  • Pica A., Vergari F., Fredi P., Del Monte M., 2016. The Aeterna Urbs geomorphological heritage (Rome, Italy). Geoheritage 8: 31-42. DOI 10.1007/s12371-015-0150-3CrossrefGoogle Scholar

  • Pinto A.B.C., Brilha J.B.R., Rios D.C., Rosat, C.S.O., 2011. Urban geotourism in Salvador (Bahia, Brazil) : a strategy for the promotion of geosciences education and geoconservation. In: International Congress of Geotourism Arouca 2011: 29–32.Google Scholar

  • Reynard E., Pica A., Coratza P., 2017. Urban geomorphological heritage. An overview. Quaestiones geographicae (this volume)Google Scholar

  • Rodrigues M.L., Freire E., Machado C.R., 2011. Geotourism routes in urban areas : a preliminary approach to the Lisbon geoheritage survey. Geojournal of Tourism and Geosites 8: 281–294.Google Scholar

  • Ruan R., Ellis E., 2004. An illustrative study on local landscape and its long-term changes based on IKONOS and historical aerial photo. Chinese Geographical Science 14: 162–169. DOI 10.1007/s11769-004-0026-yCrossrefGoogle Scholar

  • Sandu M., 1997. Bazinul Subcarpatic al Argesului. Categorii de risc geomorfologic (Subcarpathian basin of Arges river. Categories of geomorphological risks). Rev. Geogr. 4: 22–26.Google Scholar

  • Sandu M., 2008. Muscelele Argesului (Piedmont of Arges). In: Badea L. (ed.), Unitatile de Relief Ale Romanie, III: Dealurile Pericarpatice. Editura Ars Docendi, Bucuresti.Google Scholar

  • Scardozzi G., 2010. The contribution of historical aerial and satellite photos to archaeological and geo-archaeological research: Case studies in Italy and Turkey. Advances in Geosciences 24: 111–123. DOI 10.5194/adgeo-24-111-2010.CrossrefGoogle Scholar

  • Serrano E., Ruiz-Flaño P., 2009. Geomorphosites and geodiversity. In: Reynard E., Coratza P., Regolini-Bissig G. (eds), Geomorphosites. Pfeil, München: 49-61.Google Scholar

  • Stichelbaut B., 2006. The application of First World War aerial photography to archaeology: the Belgian images. Antiquity 80: 161–172. DOI 10.1017/S0003598X00093339.CrossrefGoogle Scholar

  • Varga K., Szabó S., Szabó G., Dévai G., Tóthmérész B., 2015. Improved land cover mapping using aerial photographs and satellite images. Open Geosciences 7: 15–26. DOI 10.1515/geo-2015-0002.CrossrefGoogle Scholar

  • Werle D., 2016. Early aerial photography and contributions to Digital Earth – The case of the 1921 Halifax air survey mission in Canada. IOP Conf. Ser. Earth Environ. Sci. 34: 12039. DOI 10.1088/1755-1315/34/1/012039.CrossrefGoogle Scholar

  • Zarnowski A., Banaszek A., Banaszek S., 2015. Application of technical measures and software in constructing photorealistic 3D models of historical building using ground-based and aerial (UAV) digital images. Reports on Geodesy and Geoinformatics 99: 54–63.Google Scholar

About the article

Received: 2017-04-26

Revised: 2017-07-02

Published Online: 2017-09-29

Published in Print: 2017-09-01


Citation Information: Quaestiones Geographicae, ISSN (Online) 2081-6383, DOI: https://doi.org/10.1515/quageo-2017-0026.

Export Citation

© 2017 Constantin Nistor et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in