Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

12 Issues per year


IMPACT FACTOR 2017: 1.202

CiteScore 2017: 1.22

SCImago Journal Rank (SJR) 2017: 0.409
Source Normalized Impact per Paper (SNIP) 2017: 0.869

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 91, Issue 1

Issues

Uranyl(VI) complexes with alpha-substituted carboxylic acids in aqueous solution

H. Moll / G. Geipel / T. Reich / G. Bernhard / Th. Fanghänel / I. Grenthe
Published Online: 2009-09-25 | DOI: https://doi.org/10.1524/ract.91.1.11.19008

Summary

The complex formation in the binary uranium(VI)-glycolate, -α-hydoxyisobutyrate, -α-aminoisobutyrate systems in 1.0 M NaClO4 medium was studied by means of UV-vis, TRLFS, and EXAFS. An increase in absorption and a red shift of the spectra, 5 nm compared to the free UO22+, indicate a complex formation between UO22+ and α-substituted carboxylic acids already at pH 2. 1:1 complexes dominate the uranyl speciation in the glycolate, α-hydoxyisobutyrate, and α-aminoisobutyrate system at pH 2 and 3, respectively. At higher ligand concentrations a 1:2 complex between UO22+ and α-aminoisobutyric acid was observed. There is a very strong quenching of the U(VI) fluorescence in theuranyl–α-hydroxycarboxylate systems that can be quantitatively described by the Stern–Volmer equation. As a result of the strong quenching it is not possible to detect fluorescence spectra for these complexes using TRLFS. The UO22+(aq) concentration calculated from the Stern–Volmer equation was used to determine equilibrium constants which are in good agreement with those obtained by potentiometry and NMR spectroscopy. No quenching was observed in the α-aminoisobutyrate system and their fluorescence spectra could be deconvoluted into components for the different species present. The following stability constants result from our TRLFS experiments: a) for the glycolate system log βUO₂(HOCH₂COO)⁺=2.52±0.20, b) for the α-hydroxyisobutyrate system log βUO₂[HOC(CH₃)₂COO]⁺=3.40±0.21, and c) for the α-aminoisobutyrate system logβUO₂[NH₃C(CH₃)₂COO]²⁺=1.30±0.10 and log βUO₂[NH₃C(CH₃)₂COO]₂²⁺=2.07±0.25. An increase of the fluorescence intensity connected with a red shift of the fluorescence emission spectra was observed in the system uranyl–α-aminoisobutyric acid. Fluorescence lifetimes and spectra were obtained for UO22+, UO2[NH3C(CH3)2COO]2+, and UO2[NH3C(CH3)2COO]22+. Uranium LIII-edge EXAFS measurements yielded an U-Oeq distance of 2.40 to 2.43 Å in the pH range from 2 to 4 in the α-hydroxyisobutyrate system showing a dominant bidentate coordination via the oxygens of the carboxylic group. Slightly shorter U-Oeq distances of 2.40 to 2.38 Å and no evidence for U-C distances around 2.90 Å in the glycolate system in this pH range may indicate a monodentate coordinated ligand via one oxygen from the carboxylic group. The decrease in the U-Oeq distance of the equatorial oxygens in both systems to 2.36-2.37 Å at pH values ≥5 is a strong indication for the formation of a chelate complex due to the deprotonation of the α-OH-group of the ligand. In the glycolate system in the pH range 5.5 to 11, the EXAFS spectrum showed evidence of U-U interaction at 3.81 Å indicating the formation of dimeric species.

About the article

Published Online: 2009-09-25

Published in Print: 2003-01-01


Citation Information: Radiochimica Acta, Volume 91, Issue 1, Pages 11–20, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1524/ract.91.1.11.19008.

Export Citation

© 2003 Oldenbourg Wissenschaftsverlag GmbH.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Astrid Barkleit, Christoph Hennig, and Atsushi Ikeda-Ohno
Chemical Research in Toxicology, 2018
[2]
E. Krawczyk-Bärsch, U. Gerber, K. Müller, H. Moll, A. Rossberg, R. Steudtner, and M.L. Merroun
Journal of Hazardous Materials, 2018, Volume 347, Page 233
[3]
Pranaw Kumar, P. G. Jaison, V. M. Telmore, D. Alamelu, S. K. Aggarwal, Biswajit Sadhu, and Mahesh Sundararajan
Journal of Radioanalytical and Nuclear Chemistry, 2016, Volume 308, Number 1, Page 303
[4]
Xabier Vázquez-Campos, Andrew S. Kinsela, Richard N. Collins, Brett A. Neilan, Noboru Aoyagi, and T. David Waite
Environmental Science & Technology, 2015, Volume 49, Number 14, Page 8487
[5]
Toshiyuki Fujii, Akihiro Uehara, Yoshihiro Kitatsuji, and Hajimu Yamana
Journal of Radioanalytical and Nuclear Chemistry, 2015, Volume 303, Number 1, Page 1015
[6]
ChaoFei Xu, Jing Su, Xiang Xu, and Jun Li
Science China Chemistry, 2013, Volume 56, Number 11, Page 1525
[7]
Wan-Sik Cha, Hye-Ryun Cho, and Euo-Chang Jung
Journal of the Korean Radioactive Waste Society, 2011, Volume 9, Number 4, Page 207
[8]
P. G. Jaison, Pranaw Kumar, Vijay M. Telmore, and Suresh K. Aggarwal
Rapid Communications in Mass Spectrometry, 2013, Volume 27, Number 10, Page 1105
[9]
[11]
Alfatih A. A. Osman, Gerhard Geipel, and Gert Bernhard
Radiochimica Acta, 2013, Volume 101, Number 3, Page 139
[12]
Alfatih A. A. Osman, Gerhard Geipel, and Gert Bernhard
Radiochimica Acta, 2012, Page 121217000126000
[13]
Laura Lütke, Henry Moll, and Gert Bernhard
Dalton Transactions, 2012, Volume 41, Number 43, Page 13370
[14]
A. M. Fedoseev, M. S. Grigor’ev, and A. B. Yusov
Radiochemistry, 2012, Volume 54, Number 5, Page 443
[15]
Alena Kremleva, Yun Zhang, Aleksey M. Shor, Sven Krüger, Claudia Joseph, Bianca Raditzky, Katja Schmeide, Susanne Sachs, Gert Bernhard, and Notker Rösch
European Journal of Inorganic Chemistry, 2012, Volume 2012, Number 22, Page 3636
[16]
Galiya S Azhgozhinova, Olgun Güven, Nursel Pekel, Artem V Dubolazov, Grigoriy A Mun, and Zauresh S Nurkeeva
Journal of Colloid and Interface Science, 2004, Volume 278, Number 1, Page 155
[17]
Simona Regenspurg, Camille Margot-Roquier, Messaoud Harfouche, Pascal Froidevaux, Philipp Steinmann, Pilar Junier, and Rizlan Bernier-Latmani
Geochimica et Cosmochimica Acta, 2010, Volume 74, Number 7, Page 2082
[18]
W. Cha, Hye-Ryun Cho, E. C. Jung, K. K. Park, W. H. Kim, and K. Song
Radiochimica Acta, 2012, Volume 100, Number 6, Page 371
[19]
Silvia Berto, Francesco Crea, Pier Giuseppe Daniele, Antonio Gianguzza, Alberto Pettignano, and Silvio Sammartano
Coordination Chemistry Reviews, 2012, Volume 256, Number 1-2, Page 63
[20]
Farrokh Gharib and Ali Farajtabar
Journal of Molecular Liquids, 2007, Volume 135, Number 1-3, Page 27
[21]
Silvia Berto, Francesco Crea, Pier G. Daniele, Concetta De Stefano, Enrico Prenesti, and Silvio Sammartano
Radiochimica Acta, 2012, Volume 100, Number 1, Page 13
[22]
Neetika Rawat, R.S. Sharma, B.S. Tomar, and V.K. Manchanda
Thermochimica Acta, 2010, Volume 501, Number 1-2, Page 13
[23]
Neetika Rawat, A. Bhattacharyya, B.S. Tomar, T.K. Ghanty, and V.K. Manchanda
Thermochimica Acta, 2011, Volume 518, Number 1-2, Page 111
[24]
B. Raditzky, K. Schmeide, S. Sachs, G. Geipel, and G. Bernhard
Polyhedron, 2010, Volume 29, Number 1, Page 620
[25]
Alena Kremleva, Sven Krüger, and Notker Rösch
Inorganica Chimica Acta, 2009, Volume 362, Number 8, Page 2542
[26]
Katja Schmeide, Susanne Sachs, Marianne Bubner, Tobias Reich, Karl Heinz Heise, and Gert Bernhard
Inorganica Chimica Acta, 2003, Volume 351, Page 133
[28]
A. Koban and G. Bernhard
Journal of Inorganic Biochemistry, 2007, Volume 101, Number 5, Page 750
[29]
Olga Zakharieva, Alena Kremleva, Sven Krüger, and Notker Rösch
International Journal of Quantum Chemistry, 2011, Volume 111, Number 9, Page 2045
[30]
Noboru Aoyagi, T. Toraishi, Gerhard Geipel, H. Hotokezaka, S. Nagasaki, and S. Tanaka
Radiochimica Acta, 2004, Volume 92, Number 9-11
[31]
Michael R. VanEngelen, Erin K. Field, Robin Gerlach, Brady D. Lee, William A. Apel, and Brent M. Peyton
Environmental Toxicology and Chemistry, 2010, Volume 29, Number 4, Page 763
[32]
Astrid Barkleit, Henry Moll, and Gert Bernhard
Dalton Transactions, 2009, Number 27, Page 5379
[33]
Rupashree Shyama Ray, Sven Krüger, and Notker Rösch
Dalton Transactions, 2009, Number 18, Page 3590
[34]
M. Glorius, H. Moll, G. Geipel, and G. Bernhard
Journal of Radioanalytical and Nuclear Chemistry, 2008, Volume 277, Number 2, Page 371
[35]
Astrid Barkleit, Henry Moll, and Gert Bernhard
Dalton Transactions, 2008, Number 21, Page 2879
[36]
Artem V. Dubolazov, Olgun Güven, Nursel Pekel, Grigoriy A. Mun, and Zauresh S. Nurkeeva
Journal of Polymer Science Part B: Polymer Physics, 2005, Volume 43, Number 19, Page 2737
[37]
Artem V. Dubolazov, Olgun Güven, Nursel Pekel, Galiya S. Azhgozhinova, Grigoriy A. Mun, and Zauresh S. Nurkeeva
Journal of Polymer Science Part B: Polymer Physics, 2004, Volume 42, Number 9, Page 1610

Comments (0)

Please log in or register to comment.
Log in