Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 97, Issue 9

Issues

Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent

D. Magnusson
  • 1 European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Deutschland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Birgit Christiansen / Rikard Malmbeck / Jean-Paul Glatz
Published Online: 2009-09-25 | DOI: https://doi.org/10.1524/ract.2009.1647

Abstract

The radiolytic degradation of the 6,6′-bis(5,5,8,8tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2′]bipyridine (CyMe4BTBP) based SANEX (selective actinide extraction) solvent has been investigated. As the solvent used in the extraction process is designed to separate trivalent actinides from lanthanides, the radiolytic degradation is mainly due to alpha decay of extracted minor actinide isotopes. A calculation of dose-rates was done by estimating the concentration of minor actinides in the solvent by fuel burn-up calculations and assumptions on dilutions in the subsequent reprocessing steps. The calculations showed that the main isotopes responsible for the dose-rate are 242Cm, 244Cm and 241Am. 242Cm is short-lived and has an impact only at short cooling times before reprocessing of the spent fuel. The dose-rates to a SANEX solvent in the reprocessing of standard spent LWR fuels are burn-up dependent and range from at least 0.03–0.2 kGy/h for UO2 fuels and from 0.4 to 0.8 kGy/h for MOX fuels. Fast reactor fuels yield dose-rates over 1 kGy/h. Based on these results, several radiolysis experiments were carried out in order to compare the effect of low LET external gamma radiation (0.2 kGy/h) and internal alpha radiation with different dose-rates (0.05, 0.2 and 1.0 kGy/h). Significant radiolytic degradation was shown in the gamma radiolysis and in the alpha radiolysis experiment at a dose-rate of 1 kGy/h. These experiments were continued up to an absorbed dose ∼1200 kGy and >300 kGy, respectively. Comparing the alpha radiolysis results for 0.2 kGy/h and 1.0 kGy/h, up to an absorbed dose of ∼120 kGy, no significant difference in the degradation for the different dose rates could be seen. The radiolytic degradation rate for gamma radiation was 40% higher than for alpha radiation.

Keywords: Partitioning; Extraction; Alpha radiolysis; Gamma radiolysis; SANEX

About the article

* Correspondence address: European Commission JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Deutschland,


Published Online: 2009-09-25

Published in Print: 2009-08-01


Citation Information: Radiochimica Acta International journal for chemical aspects of nuclear science and technology, Volume 97, Issue 9, Pages 497–502, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1524/ract.2009.1647.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gregory P. Horne, Stephen P. Mezyk, Nicole Moulton, Julie R. Peller, and Andreas Geist
Dalton Transactions, 2019
[2]
Shun Yan Ning, Xin Peng Wang, Qing Zou, Wei Qun Shi, Fang Dong Tang, Lin Feng He, and Yue Zhou Wei
Scientific Reports, 2017
[3]
Qing Zou, Ruiqin Liu, Shunyan Ning, Xinpeng Wang, and Yuezhou Wei
Journal of Nuclear Science and Technology, 2017, Volume 54, Number 5, Page 569
[4]
Jana Kondé, Petr Distler, Jan John, Jaroslav Švehla, Bohumír Grüner, and Zuzana Bělčická
Procedia Chemistry, 2016, Volume 21, Page 174
[5]
Elena Macerata, Eros Mossini, Stefano Scaravaggi, Mario Mariani, Andrea Mele, Walter Panzeri, Nathalie Boubals, Laurence Berthon, Marie-Christine Charbonnel, Francesco Sansone, Arturo Arduini, and Alessandro Casnati
Journal of the American Chemical Society, 2016, Volume 138, Number 23, Page 7232
[6]
Holger Schmidt, Andreas Wilden, Giuseppe Modolo, Jaroslav Švehla, Bohumir Grüner, and Christian Ekberg
Nukleonika, 2015, Volume 60, Number 4
[7]
Petr Distler, Jana Kondé, Jan John, Zuzana Hájková, Jaroslav Švehla, and Bohumír Grüner
Nukleonika, 2015, Volume 60, Number 4
[8]
Teodora Retegan, Michael Drew, Christian Ekberg, Elin Löfström Engdahl, Michael J. Hudson, Anna Fermvik, Mark R. S. Foreman, Giuseppe Modolo, and Andreas Geist
Solvent Extraction and Ion Exchange, 2014, Volume 32, Number 7, Page 720
[9]
Andreas Wilden, Giuseppe Modolo, Christian Schreinemachers, Fabian Sadowski, Steve Lange, Michal Sypula, Daniel Magnusson, Andreas Geist, Frank W. Lewis, Laurence M. Harwood, and Michael J. Hudson
Solvent Extraction and Ion Exchange, 2013, Volume 31, Number 5, Page 519
[10]
Daniel M. Whittaker, Tamara L. Griffiths, Madeleine Helliwell, Adam N. Swinburne, Louise S. Natrajan, Frank W. Lewis, Laurence M. Harwood, Stephen A. Parry, and Clint A. Sharrad
Inorganic Chemistry, 2013, Volume 52, Number 7, Page 3429
[11]
Petra J. Panak and Andreas Geist
Chemical Reviews, 2013, Volume 113, Number 2, Page 1199
[12]
Giuseppe Modolo, A. Wilden, H. Daniels, Andreas Geist, Daniel Magnusson, and Rikard Malmbeck
Radiochimica Acta, 2013, Volume 101, Number 3, Page 155
[13]
Jeremy Pearson, Oliver Jan, George Miller, and Mikael Nilsson
Procedia Chemistry, 2012, Volume 7, Page 334
[14]
Andreas Geist, Udo Müllich, Daniel Magnusson, Peter Kaden, Giuseppe Modolo, Andreas Wilden, and Thomas Zevaco
Solvent Extraction and Ion Exchange, 2012, Volume 30, Number 5, Page 433
[15]
Giuseppe Modolo, A. Wilden, Andreas Geist, D. Magnusson, and Rikard Malmbeck
Radiochimica Acta, 2012, Volume 100, Number 8-9, Page 715
[16]
Michael J. Hudson, Laurence M. Harwood, Dominic M. Laventine, and Frank W. Lewis
Inorganic Chemistry, 2013, Volume 52, Number 7, Page 3414
[17]
Anne E. V. Gorden, Michael A. DeVore, and Branson A. Maynard
Inorganic Chemistry, 2013, Volume 52, Number 7, Page 3445
[18]
R. B. Gujar, S. A. Ansari, A. Bhattacharyya, A. S. Kanekar, P. N. Pathak, P. K. Mohapatra, and V. K. Manchanda
Solvent Extraction and Ion Exchange, 2012, Volume 30, Number 3, Page 278
[19]
Anna Fermvik, Emma Aneheim, Bohumir Grüner, Zuzana Hájková, Magdaléna Kvicalová, and Christian Ekberg
Radiochimica Acta, 2012, Volume 100, Number 4, Page 273
[20]
C. Ekberg, E. Aneheim, A. Fermvik, and G. Skarnemark
Radiation Physics and Chemistry, 2010, Volume 79, Number 4, Page 454
[21]
Michael Steppert, Ivana Císařová, Thomas Fanghänel, Andreas Geist, Patric Lindqvist-Reis, Petra Panak, Petr Štěpnička, Sascha Trumm, and Clemens Walther
Inorganic Chemistry, 2012, Volume 51, Number 1, Page 591
[23]
Anna Fermvik
Journal of Radioanalytical and Nuclear Chemistry, 2011, Volume 289, Number 3, Page 811
[24]
Bruce J. Mincher, Giuseppe Modolo, and Stephen P. Mezyk
Solvent Extraction and Ion Exchange, 2010, Volume 28, Number 4, Page 415
[25]
Bruce J. Mincher, Nicholas C. Schmitt, and Mary E. Case
Solvent Extraction and Ion Exchange, 2011, Volume 29, Number 2, Page 247
[26]
Anna Fermvik, Bohumir Grüner, Magdaléna Kvíčalová, and Christian Ekberg
Radiochimica Acta, 2011, Volume 99, Number 2, Page 113

Comments (0)

Please log in or register to comment.
Log in