Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Ed. by Qaim, Syed M.

12 Issues per year


IMPACT FACTOR 2016: 1.271
5-year IMPACT FACTOR: 1.286

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2016: 0.486
Source Normalized Impact per Paper (SNIP) 2016: 0.761

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 100, Issue 8-9 (Aug 2012)

Issues

Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel

V. Metz
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
/ H. Geckeis
  • Corresponding author
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Email:
/ E. González-Robles
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
/ A. Loida
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
/ C. Bube
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
/ B. Kienzler
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Published Online: 2014-04-15 | DOI: https://doi.org/10.1524/ract.2012.1967

Abstract

Even though chemical processes related to the corrosion of spent nuclear fuel in a deep geological repository are of complex nature, knowledge on underlying mechanisms has very much improved over the last years. As a major result of numerous studies it turns out that alteration of irradiated fuel is significantly inhibited under the strongly reducing conditions induced by container corrosion and consecutive H2 production. In contrast to earlier results, radiolysis driven fuel corrosion and oxidative dissolution appears to be less relevant for most repository concepts. The protective hydrogen effect on corrosion of irradiated fuel has been evidenced in many experiments. Still, open questions remain related to the exact mechanism and the impact of potentially interfering naturally occurring groundwater trace components. Container corrosion products are known to offer considerable reactive surface area in addition to engineered buffer and backfill material. In combination, waste form, container corrosion products and backfill material represent strong barriers for radionuclide retention and retardation and thus attenuate radionuclide release from the repository near-field.

Keywords: UO2 fuel corrosion; Radionuclide release; Instant release fraction; Hydrogen effect; Coprecipitation; Sorption

About the article

Published Online: 2014-04-15

Published in Print: 2012-08-01


Citation Information: Radiochimica Acta, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1524/ract.2012.1967.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in