Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Ed. by Qaim, Syed M.

12 Issues per year


IMPACT FACTOR 2016: 1.271
5-year IMPACT FACTOR: 1.286

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2016: 0.486
Source Normalized Impact per Paper (SNIP) 2016: 0.761

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 104, Issue 11 (Nov 2016)

Issues

Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres: Part I – Adsorption of volatile polonium and bismuth on gold

Emilio Andrea Maugeri
  • Corresponding author
  • Laboratory for Radiochemistry, Paul Scherrer Institut, Villigen PSI, CH-5232 Villigen, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörg Neuhausen
  • Laboratory for Radiochemistry, Paul Scherrer Institut, Villigen PSI, CH-5232 Villigen, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Eichler
  • Laboratory for Radiochemistry, Paul Scherrer Institut, Villigen PSI, CH-5232 Villigen, Switzerland
  • Department for Chemistry and Biochemistry, University of Berne, CH-3012 Bern, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rugard Dressler
  • Laboratory for Radiochemistry, Paul Scherrer Institut, Villigen PSI, CH-5232 Villigen, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kim Rijpstra
  • Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefaan Cottenier
  • Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium
  • Department of Materials Science and Engineering, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Piguet
  • Laboratory for Radiochemistry, Paul Scherrer Institut, Villigen PSI, CH-5232 Villigen, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Vögele
  • Laboratory for Radiochemistry, Paul Scherrer Institut, Villigen PSI, CH-5232 Villigen, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dorothea Schumann
  • Laboratory for Radiochemistry, Paul Scherrer Institut, Villigen PSI, CH-5232 Villigen, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-13 | DOI: https://doi.org/10.1515/ract-2016-2573

Abstract

Polonium isotopes are considered the most hazardous radionuclides produced during the operation of accelerator driven systems (ADS) when lead–bismuth eutectic (LBE) is used as the reactor coolant and as the spallation target material. In this work the use of gold surfaces for capturing polonium from the cover gas of the ADS reactor was studied by thermochromatography. The results show that gaseous monoatomic polonium, formed in dry hydrogen, is adsorbed on gold at 1058 K. Its adsorption enthalpy was calculated as –250±7 kJ mol−1, using a Monte Carlo simulation code. Highly volatile polonium species that were observed in similar experiments in fused silica columns in the presence of moisture in both inert and reducing gas were not detected in the experiments studying adsorption on gold surfaces. PoO2 is formed in both dry and moist oxygen, and its interaction with gold is characterized by transport reactions. The interaction of bismuth, present in large amounts in the atmosphere of the ADS, with gold was also evaluated. It was found that bismuth has a higher affinity for gold, compared to polonium, in an inert, reducing, and oxidizing atmosphere. This fact must be considered when using gold as a material for filtering polonium in the cover gas of ADS.

This article offers supplementary material which is provided at the end of the article.

Keywords: Polonium; thermochromatography; ADS; MYRRHA

References

  • 1.

    Cohen, B. L.: Risk analysis of buried waste from electricity generation. Am. J. Phys. 54, 38 (1986).Google Scholar

  • 2.

    González-Romero, E. M.: Impact of partitioning and transmutation on the high level waste management. Nucl. Eng. Des. 241, 3436 (2011).Google Scholar

  • 3.

    Salvatores, M., Palmiotti, G.: Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog. Part. Nucl. Phys. 66, 144 (2011).Google Scholar

  • 4.

    Rubbia, C.: A high gain energy amplifier operated with fast neutrons. AIP Conf. Proc. 346, 44 (1995).Google Scholar

  • 5.

    Sasa, T.: Research activities for accelerator-driven transmutation system at JAERI. Prog. Nucl. Energ. 47, 314 (2005).Google Scholar

  • 6.

    Magill, J., Pfennig, G., Dreher, R., Sóti, Z.: Karlsruher Nuklidkarte/Chart of the Nuclides. 9th ed. Nucleonica GmbH, Eggenstein-Leopoldshafen (2015).Google Scholar

  • 7.

    Colle, R., Fitzgerald, R. P., Laureano-Perez, L.: A new determination of the Po-209 half-life. J. Phys. G Nucl. Part. Phys. 41, 105103 (2014).Google Scholar

  • 8.

    Naimark, D. H.: Effective half-life of polonium in the human, Technical Report MLM-272/XAB, Mound Lab., Miamisburg, OH. MLM-272/XAB; Other: CNN: AEC-AT-33-1-GEN-53 United States Other: CNN: AEC-AT-33-1-GEN-53 Tue Feb 12 16:32:19 EST 2008NTISGRA; GRA-94-31659; EDB-94-119176 English, 1949.Google Scholar

  • 9.

    Neuhausen, J., Köster, U., Eichler, B.: Investigation of evaporation characteristics of polonium and its lighter homologues selenium and tellurium from liquid Pb-Bi-eutecticum. Radiochim. Acta 92, 917 (2004).Google Scholar

  • 10.

    Gonzalez Prieto, B., Van den Bosch, J., Martens, J. A., Neuhausen, J., Aerts, A.: Equilibrium evaporation of trace polonium from liquid lead-bismuth eutectic at high temperature. J. Nucl. Mater. 450, 299 (2014).Google Scholar

  • 11.

    Buongiorno, J., Larson, C., Czerwinski, K. R.: Speciation of polonium released from molten lead bismuth. Radiochim. Acta 91, 153 (2003).Google Scholar

  • 12.

    Ohno, S., Kurata, Y., Miyahara, S., Katsura, R., Yoshida, S.: Equilibrium evaporation behavior of polonium and its homologue tellurium in liquid lead-bismuth eutectic. J. Nucl. Sci. Technol. 43, 1359 (2006).Google Scholar

  • 13.

    Petryanov, I. V., Borisov, N. B., Churkin, S. L., Borisova, L. I., Starostina, I. A.: Generation and isolation of gaseous fraction of polonium from its solid preparations. Dokl. Akad. Nauk SSSR 322, 557 (1992).Google Scholar

  • 14.

    Maugeri, E. A., Neuhausen, J., Eichler, R., Piguet, D., Mendonça, T. M., Stora, T., Schumann, D.: Thermochromatography study of volatile polonium species in various gas atmospheres. J. Nucl. Mater. 450, 292 (2014).Google Scholar

  • 15.

    Pankratov, D. V., Efimov, E. I., Toshinskii, G. I., Ryabaya, L. D.: Analysis of the polonium hazard in nuclear power systems with lead–bismuth coolant. At. Energ. 97, 559 (2004).Google Scholar

  • 16.

    Buongiorno, J., Loewen, E. P., Czerwinski, K., Larson, C.: Studies of polonium removal from molten lead-bismuth for lead-alloy-cooled reactor applications. Nucl. Technol. 147, 406 (2004).Google Scholar

  • 17.

    Heinitz, S., Neuhausen, J., Schumann, D.: Alkaline extraction of polonium from liquid lead bismuth eutectic. J. Nucl. Mater. 414, 221 (2011).Google Scholar

  • 18.

    Heinitz, S.: Investigations on physico-chemical aspects of lead-based alloys for nuclear applications. (Ph.D. Thesis), University of Bern (2013).Google Scholar

  • 19.

    Obara, T., Koga, T., Miura, T., Sekimoto, H.: Polonium evaporation and adhesion experiments for the development of polonium filter in lead–bismuth cooled reactors. Prog. Nucl. Energ. 50, 556 (2008).Google Scholar

  • 20.

    Gäggeler, H., Dornhofer, H., Schmidt-Ott, W. D., Greulich, N., Eichler, B.: Determination of adsorption enthalpy for polonium on surfaces of copper, silver, gold, palladium and platinum. Radiochim. Acta 38, 103 (1985).Google Scholar

  • 21.

    Rona, E.: Verdampfungsversuche an polonium. Sitzungsber. Akad. Wiss., Wien 141, 533 (1932).Google Scholar

  • 22.

    Rona, E., Hoffer, M.: Verdampfungsversuche an Polonium in Sauerstoff und Stickstoff. Sitzungsber. Akad. Wiss. Wien 144, 397 (1935).Google Scholar

  • 23.

    Eichler, B., Gaggeler, H., Rossbach, H., Hübener, S.: Adsorption of volatile metals on metal surfaces and its application in nuclear chemistry. 2. Evaluation of adsorption enthalpies for polonium on surfaces of transition metals and copper, silver and gold. Radiochim. Acta 38, 131 (1985).Google Scholar

  • 24.

    Zvara, I.: The inorganic radiochemistry of heavy elements. Springer, Netherlands (2010).Google Scholar

  • 25.

    Eichler, B., Zude, F., Fan, W., Trautmann, N., Herrmann, G.: Complex transport reactions in a temperature gradient tube: radiochemical study of volatilization and deposition of Iridium oxides and hydroxides. Radiochim. Acta 61, 81 (1993).Google Scholar

  • 26.

    Zvara, I.: Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim. Acta 38, 95 (1985).Google Scholar

  • 27.

    Eichler, B.: The behaviour of radionuclides in gas adsorption chromatographic processes with superimposed chemical reactions (chlorides). Radiochim. Acta 72, 19 (1996).Google Scholar

  • 28.

    Greenwood, N. N., Earnshaw, A.: Chemistry of the elements. Pergamon press, Oxford (1984).Google Scholar

  • 29.

    Rijpstra, K.: Density functional theory as a tool to get more out of experimantal data: case-studies for Al-Zn-O and for the interaction between Po and Po-Bi-eutectic. (Ph.D. Thesis), Faculteit Wetenschappen Vakgroep Natuurkunde & Sterrenkunde, Universiteit Gent (2014).Google Scholar

  • 30.

    Eichler, B.: Bestimmung der Adsorptionswärmen gasförmiger Metalle auf festen Metalloberflächen bei Null-Bedeckung. Zentralinstitut für Kernforschung, Rossendorf (1978).Google Scholar

  • 31.

    Neuhausen, J.,Eichler, R.: Extension of Miedema’s macroscopic atom model to the elements of group 16 (O, S, Se, Te, Po) PSI Report No. 03–13. PSI, Villigen (2003).Google Scholar

  • 32.

    de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., Niessen, A. K.: Cohesion in metals, transition metal alloys. North-Holland, Amsterdam (1988).Google Scholar

  • 33.

    Eichler, B.,Rossbach, H.: Adsorption of volatile metals on metal-surfaces and its application in nuclear chemistry. 1. Calculation of adsorption enthalpies for hypothetical superheavy elements with Z around 114. Radiochim. Acta 33, 121 (1983).Google Scholar

  • 34.

    Abakumov, A. S.: Thermal reactions of polonium. Russ. Chem. Rev. 51, 622 (1982).Google Scholar

  • 35.

    Fazio, C.: Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies – 2015 Edition, OECD/NEA Nuclear Science Committee (2015).Google Scholar

  • 36.

    Gonzáles Prieto, B.: Evaporation of polonium from lead-bismuth eutectic nuclear coolant, PhD, Bioscience Engineering, Ku Leuven (2015).Google Scholar

  • 37.

    Rizzi, M., Neuhausen, J., Eichler, R., Tuerler, A., Mendonca, T. M., Stora, T., Prieto, B. G., Aerts, A., Schumann, D.: Polonium evaporation from dilute liquid metal solutions. J. Nucl. Mater. 450, 304 (2014).Google Scholar

About the article

Received: 2016-01-12

Accepted: 2016-05-13

Published Online: 2016-07-13

Published in Print: 2016-11-01


Citation Information: Radiochimica Acta, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2573.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in