Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

See all formats and pricing
More options …
Volume 104, Issue 12


Influence of the goethite (α-FeOOH) surface on the stability of distorted PuO2 and PuO2–x phases

Sandra D. Taylor
  • Corresponding author
  • The University of Michigan, Department of Earth and Environmental Sciences, 2534 C. C. Little Building, 1100 North University Ave., Ann Arbor, MI 48109–1005, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brian A. Powell
  • Clemson University, Environmental Engineering and Earth Sciences Department, Rich Lab, 342 Computer Court, Anderson, SC 29625, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Udo Becker
  • The University of Michigan, Department of Earth and Environmental Sciences, 2534 C. C. Little Building, 1100 North University Ave., Ann Arbor, MI 48109–1005, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-12 | DOI: https://doi.org/10.1515/ract-2015-2515


Experiments by [Powell, B. A., Dai, Z. R., Zavarin, M., Zhao, P. H., Kersting, A. B.: Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces. Environ. Sci. Technol. 45, 2698 (2011).] deduced the heteroepitaxial growth of a bcc Pu4O7 phase when sorbed onto goethite from d-spacing measurements obtained from selected-area electron diffraction (SAED) patterns. The structural and/or chemical modification of Pu(IV) oxide (PO) nanocolloids upon sorption to goethite, in turn, affects colloidal-transport of Pu in the subsurface. In this study, molecular simulations were applied to investigate mechanisms affecting the formation of non-fcc PO phases and to understand the influence of goethite in stabilizing the non-fcc PO phase. Analyses of the structure, chemistry, and formation energetics for several bulk PuO2 and PuO2–x phases, using ab initio methods, show that the formation of a non-fcc PO can occur from the lattice distortion (LD) of fcc PuO2 upon sorption and formation of a PO–goethite interface. To strain and non-uniformly distort the PuO2 lattice to match that of the goethite substrate at ambient conditions would require 88 kJ/mol Pu4O8. The formation of a hypostoichiometric PuO2–x phase, such as the experimentally-deduced bcc, Ia3̅ Pu4O7 phase, requires more O-poor conditions and/or high energetic inputs (> +365 kJ/mol Pu4O7 at O-rich conditions). Empirical methods were also applied to study the effect of lattice distortion on sorption energetics and adsorbate particle growth using simple heterointerfaces between cubic salts, where KCl clusters (notated as KClLD) of varying size and lattice mismatch (LM) were sorbed to a NaCl cluster. When the lattice of a KClLD cluster has <15% LM with that of a NaCl substrate, the sorption of KClLD onto NaCl is exothermic (<–80 kJ/mol) and the KClLD cluster can reach sizes of ~2–5 nm on the NaCl substrate. These models suggest that the lattice of a fcc PuO2 particle can distort upon formation of a heterointerface with goethite to lower LM, in turn better enabling the growth of the PO adsorbates and yielding more exothermic adsorption energies. A more detailed understanding of the interfacial environment between PO and goethite is obtained through structural, chemical, and energetic analyses on modeled PuO2 (110)– and PuO2–x (110)–goethite (001) heterointerfaces. Structural analyses of the heterointerfaces continue to support that the lattice of PO is strained to better match that of goethite and thus lead to the formation of a non-fcc PO phase. When the lattice of the PO (110) surface is distorted to match that of the goethite (001) surface, the alignment and d-spacings from simulated electron diffraction patterns for the PO–goethite heterointerfaces reproduce experimental observations. Non-fcc PO thin-films are also found to be stabilized through the formation of an interface with goethite, as the work of adhesion for the PuO2– and PuO2–x–goethite interfaces are 1.4 J/m2 and 2.0 J/m2, respectively. Analyses of electron and charge density of the heterointerfaces also show that covalent- to polar-covalent bonding at the interface promotes the stabilization of a PO–goethite interface. The results from these models contribute to experimental observations, providing further understanding of how the goethite substrate influences the formation and stabilization of a non-fcc PO phase. Furthermore, the information from this study aids in better understanding processes at mineral–water interfaces that influence actinide transport.

This article offers supplementary material which is provided at the end of the article.

Keywords: Lattice distortion; goethite; Pu oxide; interfacial interactions; density functional calculations; molecular simulations


  • 1.

    Kersting, A. B.: Plutonium transport in the environment. Inorg. Chem. 52, 3533 (2013).Google Scholar

  • 2.

    Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., Thompson, J. L.: Migration of plutonium in ground water at the Nevada Test Site. Nature 397, 56 (1999).Google Scholar

  • 3.

    Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B., Tkachev, V. V., Myasoedov, B. F.: Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314, 638 (2006).Google Scholar

  • 4.

    Powell, B. A., Dai, Z. R., Zavarin, M., Zhao, P. H., Kersting, A. B.: Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces. Environ. Sci. Technol. 45, 2698 (2011).Google Scholar

  • 5.

    Zavarin, M., Zhao, P. H., Dai, Z. R., Kersting, A. B.: Plutonium sorption and precipitation in the presence of goethite at 25 and 80 °C. Radiochim. Acta 102, 983 (2014).Web of ScienceGoogle Scholar

  • 6.

    Coffinberry, A. S., Miner, W. N.: The metal plutonium. University of Chicago Press (1961), Chicago.Google Scholar

  • 7.

    Petit, L., Svane, A., Szotek, Z., Temmerman, W. M.: First-principles calculations of PuO2+/–x. Science 301, 498 (2003).Google Scholar

  • 8.

    Reuter, K., Scheffler, M.: Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2002).Google Scholar

  • 9.

    Sun, B., Liu, H. F., Song, H. F., Zhang, G. C., Zheng, H., Zhao, X. G., Zhang, P.: The environmental dependence of redox energetics of PuO2 and α-Pu2O3: a quantitative solution from DFT+U. Phys. Lett. A 376, 2672 (2012).Google Scholar

  • 10.

    Perdew, J. P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar

  • 11.

    Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., Payne, M. C.: First principles methods using CASTEP, Z. Kristallogr., 220, 567–570 (2005).Google Scholar

  • 12.

    Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., Payne, M. C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.-Condens. Mat. 14, 2717 (2002).Google Scholar

  • 13.

    Vanderbilt, D.: Soft Self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).Google Scholar

  • 14.

    Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys.-Condens. Mat. 21, 084204 (2009).Google Scholar

  • 15.

    Schnitker, J., Srolovitz, D. J.: Misfit effects in adhesion calculations. Model. Simul. Mater. Sci. 6, 153 (1998).Google Scholar

  • 16.

    Kubicki, J. D., Paul, K. W., Sparks, D. L.: Periodic density functional theory calculations of bulk and the (010) surface of goethite. Geochem. Trans. 9, 1 (2008).Google Scholar

  • 17.

    Rakovan, J., Becker, U., Hochella, M. F.: Aspects of goethite surface microtopography, structure, chemistry, and reactivity. Am. Mineral. 84, 884 (1999).Google Scholar

  • 18.

    Rak, Z., Ewing, R. C., Becker, U.: Hydroxylation-induced surface stability of AnO2 (An = U, Np, Pu) from first-principles. Surf. Sci. 608, 180 (2013).Google Scholar

  • 19.

    Jomard, G., Bottin, F.: Thermodynamic stability of PuO2 surfaces: influence of electronic correlations. Phys. Rev. B 84, 195469 (2011).Google Scholar

  • 20.

    Siegel, D. J., Hector, L. G., Adams, J. B.: Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC. Surf. Sci. 498, 321 (2002).Google Scholar

  • 21.

    Siegel, D. J., Hector, L. G., Adams, J. B.: Adhesion, atomic structure, and bonding at the Al (111)/α-Al2O3 (0001) interface: A first principles study. Phys. Rev. B 65, 085415 (2002).Google Scholar

  • 22.

    Batirev, I. G., Alavi, A., Finnis, M. W., Deutsch, T.: First-principles calculations of the ideal cleavage energy of bulk niobium (111)/α-alumina (0001) interfaces. Phys. Rev. Lett. 82, 1510 (1999).Google Scholar

  • 23.

    Wang, Z. C., Saito, M., Tsukimoto, S., Ikuhara, Y.: Heterointerfaces: Atomic structures, electronic states, and related properties. J. Ceram. Soc. Jpn. 119, 783 (2011).Google Scholar

  • 24.

    Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).Google Scholar

  • 25.

    Hailstone, R. K., DiFrancesco, A. G., Leong, J. G., Allston, T. D., Reed, K. J.: A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. J. Phys. Chem. C 113, 15155 (2009).Google Scholar

  • 26.

    Barron, V., Torrent, J.: Surface hydroxyl configuration of various crystal faces of hematite and goethite. J. Colloid Interf. Sci. 177, 407 (1996).Google Scholar

  • 27.

    Cornell, R. M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences, and uses, 2nd, Completely rev. and extended ed., Wiley-VCH (2003), Weinheim.Google Scholar

  • 28.

    Mason, S. E., Iceman, C. R., Tanwar, K. S., Trainor, T. P., Chaka, A. M.: Pb(II) adsorption on isostructural hydrated alumina and hematite (0001) surfaces: a DFT study. J. Phys. Chem. C 113, 2159 (2009).Google Scholar

About the article

Received: 2015-09-18

Accepted: 2016-06-25

Published Online: 2016-08-12

Published in Print: 2016-12-01

Citation Information: Radiochimica Acta, Volume 104, Issue 12, Pages 821–841, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2015-2515.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in