Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

See all formats and pricing
More options …
Volume 104, Issue 12


Sorption behavior of cesium, cobalt and europium radionuclides onto hydroxyl magnesium silicate

Mostafa M. Hamed
  • Corresponding author
  • Hot Laboratories and Waste Management Center, Atomic Energy Authority, 13759 Cairo, Egypt, Tel.: +201022452297, Fax: +20244620784
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Holiel / I. M. Ahmed
Published Online: 2016-09-01 | DOI: https://doi.org/10.1515/ract-2016-2579


The radioactive wastes from different activities have to be safely disposed of and isolated from the human environment. The retardation of radioactive materials by designed barriers is originally controlled by the sorption ability of the mineral compositions. In this work, a naturally available mineral composite, a hydroxyl magnesium silicate (HMS) was investigated as potential natural inorganic sorbent for the retention of long-lived radionuclides (134Cs, 60Co and 152+154Eu) from aqueous solutions. The factors affecting the sorption process, such as contact time and pH were evaluated. Furthermore X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal and thermogravimetry analyses (DTA/TGA) measurements were examined in order to assess the physicochemical properties of the magnesium silicate mineral. Langmuir and Freundlich isotherms fitted the result s substantially better than the Flory–Huggins isotherm and the sorption was found to follow pseudo-first order kinetic model. The proposed mineral has been successfully applied for the sorption of 134Cs, 60Co and 152+154Eu radionuclides from real radioactive waste. The results indicated that about 97.4–99% of 134Cs, 60Co and 152+154Eu radionuclides were efficiently retained onto the HMS mineral. Based on the results obtained, it can be concluded that the HMS mineral is an economic and efficient retaining material for environmental hazardous migration and/or leakage of some radionuclides such as 134Cs, 60Co and 152+154Eu and trivalent actinide (241Am, 242mAm and 243Am) ions. Therefore, this study could be used as a starting point to establish and consider that mineral as an engineered barrier around the disposal facilities at the nuclear activity centres.

Keywords: Cesium; cobalt; europium; sorption; mineral composite


  • 1.

    Ahmad, S., Mannan, A., Qureshi, I. H.: Adsorption studies of radioactive cobalt on a minerals mixture. Sep. Sci. Technol. 27, 523 (1992).Google Scholar

  • 2.

    Galamboš, M., Rosskopfová, O., Kufčáková, J., Rajec, P.: Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. J. Radioanal. Nucl. Chem. 288, 765 (2011).Google Scholar

  • 3.

    Hamed, M. M., Aly, M. I, Nayl, A. A.: Kinetics and thermodynamics studies of cobalt, strontium and cesium sorption on marble from aqueous solution. Chem. Ecol. 32, 68 (2016).Google Scholar

  • 4.

    Sun, Y., Li, J., Wang, X.: The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochimica et Cosmochimica Acta 140, 621 (2014).Google Scholar

  • 5.

    Galamboš, M., Suchánek, P., Rosskopfová, O.: Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J. Radioanal. Nucl. Chem. 293, 613 (2012).Google Scholar

  • 6.

    Bradbury, M. H., Baeyens, B.: Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66, 2325 (2002).Google Scholar

  • 7.

    Galamboš, M., Magula, M., Daňo, M., Osacký, M., Rosskopfová, O., Rajec P.: Comparative study of cesium adsorption on dioctahedral and trioctahedral smectites. J. Radioanal. Nucl. Chem. 293, 829 (2012).Google Scholar

  • 8.

    Adeleye, S. A, Clay, P. G.: Sorption of cesium, strontium and europium ions on clay minerals. J. Mater. Sci. 29, 954 (1994).Google Scholar

  • 9.

    Kang, M. J., Hahn, B. S.: Adsorption behavior of aqueous europium on kaolinite under various disposal conditions. Korean J. Chem. Eng. 21, 419 (2004).Google Scholar

  • 10.

    Metwally, S. S., Ayoub, R. R., Aly, H. F.: Utilization of low-cost sorbent for removal and separation of 134Cs, 60Co and 152+154Eu radionuclides from aqueous solution. J. Radioanal. Nucl. Chem. 302, 441 (2014).Google Scholar

  • 11.

    Shahat, A., Awual, M. R., Naushad, M.: Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chem. Eng. J. 271, 155 (2015).Google Scholar

  • 12.

    Hamed, M. M., Attallah, M. F., Metwally, S. S.: Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene. Radiochim. Acta 102, 1017 (2014).Google Scholar

  • 13.

    Ersoy, B.: Influence of pH and chloride-based metal salts on coagulation/dispersion behavior of talc suspension. Sep. Sci. Technol. 46, 1519 (2011).Google Scholar

  • 14.

    Vijayaragavan, R.: Mineralogical characterization studies on unburnt ceramic product made from rock residue additives by FT-IR spectroscopic technique. Int. J. Mod. Phys. Confer. Ser. 22, 62 (2013).Google Scholar

  • 15.

    Ossman, M. E., Mansour, M. S., Fattah, M. A., Taha, N., Kiros, Y.: Peanut shells and talc powder for removal of hexavalent chromium from aqueous solutions. Bulg. Chem. Commun. 46, 629 (2014).Google Scholar

  • 16.

    Saiah, F. B. D., Su, B., Bettahar, N.: Nickel–iron layered double hydroxide (LDH): textural properties upon hydrothermal treatments and application on dye sorption. J. Hazard. Mater. 165, 206 (2009).Google Scholar

  • 17.

    Wenlei, L., Shanlin, Z., Shuang, C., Jinhui, Z., Ping, L., Shuangchun, Y.: Adsorptive characteristics of modified talcum powder in removing methylene blue from wastewater. Chem. Spec. Bioavailab. 26, 167 (2014).Google Scholar

  • 18.

    Santos, H., Yada, K.: Thermal transformation of talc as studied by Electron-Optical Methods. Clays Clay Miner. 36, 289 (1988).Google Scholar

  • 19.

    Goren, R., Gocmez, H., Ozgur, C.: Synthesis of cordierite powder from talc, diatomite and alumina. Ceram. Int. 23, 407 (2006).Google Scholar

  • 20.

    Metwally, S. S., El-Gammal, B., Aly, H. F., Abo-El-Enein, S. A.: Removal and separation of some radionuclides by poly-acrylamide based Ce(IV) phosphate from radioactive waste solutions. Sep. Sci. Technol. 46, 1808 (2011).Google Scholar

  • 21.

    Krishnan, K. A., Sreejalekshmi, K. G., Vimexen, V., Dev, V.: Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions. Ecotoxi. Environ. Safe. 124, 418 (2016).Google Scholar

  • 22.

    Deng, H., Li, Y., Huang, Y., Ma, X., Wu, L., Cheng, T.: An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution. Chem. Eng. J. 286, 25 (2016).Google Scholar

  • 23.

    Gupta, V. K, Agarwal, S., Saleh, T. A.: Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water. Res. 45, 2207 (2011).Google Scholar

  • 24.

    Hamed, M. M.: Sorbent extraction behavior of a nonionic surfactant, Triton X-100, onto commercial charcoal from low level radioactive waste. J. Radioanal. Nucl. Chem. 302, 303 (2014).Google Scholar

  • 25.

    Srilakshmi, C., Saraf, R.: Ag-doped hydroxyapatite as efficient adsorbent for removal of Congo red dye from aqueous solution: Synthesis, kinetic and equilibrium adsorption isotherm analysis. Micropor. Mesopor. Mat. 219, 134 (2016).Google Scholar

  • 26.

    Tang, D., Zhang, G.: Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism. Chem. Eng. J. 283, 721 (2016).Google Scholar

  • 27.

    Gupta, V. K, Gupta, M., Sharma, S.: Process development for the removal of lead chromium from aqueous solutions using red mud an aluminum industry waste. Water. Res. 35, 1125 (2001).Google Scholar

  • 28.

    Maiti, S., Purakayastha, S., Ghosh, B.: Production of low-cost carbon adsorbents from agricultural wastes and their impact on dye adsorption. Chem. Eng. Commun. 195, 386 (2008).Google Scholar

  • 29.

    Horsfall, M., Spiff, A. I.: Equilibrium sorption study of Al3+, Co2+ and Ag2+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK) waste biomass. Acta Chim. Slov. 52, 174 (2005).Google Scholar

  • 30.

    Attallah, M. F., Allan, K. F., Mahmoud, M. R.: Synthesis of poly (acrylic acid–maleic acid) SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions. J. Radioanal. Nucl. Chem. 307, 1231 (2016).Google Scholar

  • 31.

    Attallah, M. F., Borai, E. H., Shady, S. A.: Kinetic investigation for sorption of europium and samarium from aqueous solution using resorcinol–formaldehyde polymeric resin. J. Radioanal. Nucl. Chem. 299, 1927 (2014).Google Scholar

  • 32.

    Abbas, M, Kaddour, S, Trari, M.: Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 20, 745 (2014).Google Scholar

  • 33.

    Smičiklas, I., Dimović, S., Plećaš, I., Mitrić, M.: Removal of Co2+ from aqueous solutions by hydroxyapatite. Wat. Rese. 40, 2267 (2006).Google Scholar

  • 34.

    Rizk, S. E., Hamed, M. M.: Batch sorption of iron complex dye, naphthol green B from wastewater on charcoal, kaolinite and tafla. Desalin. Water Treat. 56, 1536 (2015).Google Scholar

  • 35.

    Güzel, F., Yakut, H., Topal, G.: Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. J. Hazard. Mat. 153, 1275 (2008).Google Scholar

  • 36.

    Sahu, M. K., Mandal, S., Yadav, L. S., Dash, S. S., Patel, R. K.: Equilibrium and kinetic studies of Cd(II) ion adsorption from aqueous solution by activated red mud. Desalin. Water Treat. 57, 14251 (2016).Google Scholar

  • 37.

    Hamed, M. M., Holiel, M., Ismail, Z. H.: Removal of 134Cs and 152+154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochim. Acta 104, 399 (2016).Web of ScienceGoogle Scholar

About the article

Received: 2016-01-21

Accepted: 2016-06-29

Published Online: 2016-09-01

Published in Print: 2016-12-01

Citation Information: Radiochimica Acta, Volume 104, Issue 12, Pages 873–890, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2579.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A.A. Nayl, I.M. Ahmed, A.I. Abd-Elhamid, H.F. Aly, and M.F. Attallah
Separation and Purification Technology, 2019, Page 116060
Mostafa M. Hamed, Reham S. Hassan, and Sayed S. Metwally
Process Safety and Environmental Protection, 2019, Volume 124, Page 31
Balasubramanian Arunraj, Talasila Sathvika, Vidya Rajesh, and N. Rajesh
ACS Omega, 2019, Volume 4, Number 1, Page 940
Islam Mohamed Abdelmonem, Essam Metwally, Tharwat Essa Siyam, Farid Abou El-Nour, and Abdel-Rahman Mahmoud Mousa
Journal of Radioanalytical and Nuclear Chemistry, 2019, Volume 319, Number 3, Page 1145
H. S. Hassan, S. H. Kenawy, Gehan T. El-Bassyouni, Esmat M. A. Hamzawy, and R. S. Hassan
Particulate Science and Technology, 2018, Page 1
Mohammed F. Hamza, Jean-Claude Roux, and Eric Guibal
Chemical Engineering Journal, 2018
M.I. El-Dessouky, H.H. Ibrahiem, E.H. EL-Masry, G.E. Sharaf El-deen, N.M. Sami, M.E. Moustafa, and E.M. Mabrouk
Applied Clay Science, 2018, Volume 151, Page 73
Ayano Yamashita, Takahiro Sasaki, and Shunitz Tanaka
Journal of Environmental Chemical Engineering, 2017, Volume 5, Number 3, Page 2912

Comments (0)

Please log in or register to comment.
Log in