Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Print + Online
See all formats and pricing
More options …
Volume 104, Issue 12

Issues

Synthesis and in vitro evaluation of no-carrier-added 2-(3-(4-(4-[18F]fluorobenzyl)piperazin-1-yl)propyl)benzo[d]thiazole, a potential dopamine D4 receptor radioligand

Li Gu-Cai
  • Corresponding author
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Hunan Xiangtan, 411104, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhang Ru
  • College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Hunan Xiangtan, 411104, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xia Jiao-yun
  • School of Chemistry and Biology Engineering, Changsha University of Science and Technology, 410114, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-17 | DOI: https://doi.org/10.1515/ract-2016-2597

Abstract

The dopamine D4 receptor has been shown to play important roles in some central nervous system pathologies. Specific radioligands for the D4 receptor may be useful to understand the function of the D4 receptor and its correlations with various disorders. 2-(3-(4-(4-[18F]Fluorobenzyl)piperazin-1-yl)propyl)benzo[d]thiazole ([18F]4) was synthesized through a one-pot two-step procedure with total yield 18.6% (decay corrected). The specific activity of the radioligand was 112 GBq/μmol and its radiochemical purity was >95.0%. Its affinity and selectivity for dopamine D2-like receptors were measured through in vitro receptor binding evaluation and the Ki value for the D4 receptor was determined to be 2.9±0.2 nM, and its selectivity for the dopamine D4 receptor is 709-fold versus D2long receptor, 823-fold versus D3 receptor. The partition coefficient (Log D) of it was determined to be 2.6±0.1 through octanol-water partition experiment. The ligand presents desirable combination of lipophilicity, affinity and selectivity for the dopamine D4 receptor. The results suggested that the radioligand shows promises for the in vivo study of the dopamine D4 receptor.

Keywords: Fluorine-18 labeling; dopamine D4 receptor; benzo[d]thiazole; biological evaluation

References

  • 1.

    Boyd, K. N., Mailman, R. B.: Dopamine receptor signaling and current and future antipsychotic drugs. Handb. Exp. Pharmacol. 212, 53 (2012).Google Scholar

  • 2.

    Beaulieu, J-M., Espinoza, S., Gainetinov, R. R.: Dopamine receptors –IUPHAR review 13. Br. J. Pharmacol. 172, 1 (2015).Web of ScienceGoogle Scholar

  • 3.

    Cocker, P. J., Hosking, J. G., Murch, W. S., Clark, L., Winstanley, C. A.: Activation of dopamine D4 receptors within the anterior cingulate cortex enhances the erroneous expectation of reward on a rat slot machine task. Neuropharmacology 105, 186 (2016).Google Scholar

  • 4.

    Nakazawa, S., Nakamichi, K., Imai, H., Ichihara, J.: Effect of dopamine D4 receptor agonists on sleep architecture in rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 63, 6 (2015).Google Scholar

  • 5.

    Woods, A. S.: The dopamine D4 receptor, the ultimate disordered protein. Recept. Signal Transduct. Res. 30(5), 331 (2010).Google Scholar

  • 6.

    Ogata, G., Stradleigh, T. W., Partida, G. J., Ishida, A. T.: Dopamine and full-field illumination activate D1 and D2–D5-type receptors in adult rat retinal ganglion cells. J. Comp. Neurol. 520(17), 4032 (2012).Google Scholar

  • 7.

    Mulligan, R. C., Kristjansson, S. D., Reiersen A. M., Parra, A. S., Anokhim, A. P.: Neural correlates of inhibitory control and functional genetic variation in the dopamine D4 receptor gene. Neuropsychologia 62, 306 (2014).Google Scholar

  • 8.

    Lally, J., Tully, J., Robertson, D., Stubbs, B., Gaughran, F., MacCabe, J. H.: Augmentation of clozapine with electroconvulsive therapy in treatment resistant schizophrenia: a systematic review and meta-analysis. Schizophr. Res. 171, 215 (2016).Google Scholar

  • 9.

    Sanna, F., Contini, A., Melis, M. R., Argiolas, A.: Role of dopamine D4 receptors in copulatory behavior: studies with selective D4 agonists and antagonists in male rats. Pharmacol. Biochem. Behav. 137, 110 (2015).Google Scholar

  • 10.

    Sampson, D., Zhu, X. Y., Eyunni, S. V. K., Etukala, J. R., Ofori, E., Bricker, B., Lamango, N. S., Setola, V., Roth, B. L., Ablordeppey, S. Y.: Identification of a new selectivity dopamine D4 receptor ligand. Bioorg. Med. Chem. 22(12), 3105 (2014).Google Scholar

  • 11.

    Lacivita, E., Giorgio, P. D., Lee, I. T., Rodeheaver, S. I., Weiss, B. A., Fracasso, C., Caccia, S., Berardi, F., Perrone, R., Zhang, M. R., Maeda, J., Higuchi, M., Suhara, T., Schetz, J. A., Leopoldo, M.: Design, synthesis, radiolabeling and in vivo evaluation of carbon-11 labeled N-[2-[4- (3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a potential Positron Emission Tomography tracer for the dopamine D4 receptor. J. Med. Chem. 53, 7344 (2010).Google Scholar

  • 12.

    Sanna, F., Ortner, B., Hübner, H., Löber, S., Tschammer, N., Gmeiner, P.: Discovery of dopamine D4 receptor antagonists with planar chirality. Bioorg. Med. Chem. 21, 1680 (2013).Google Scholar

  • 13.

    Briguglio, I., Piras, S., Corona, P., Gavini, E., Nieddu, M., Boatto, G., Carta, A.: Benzotriazole: an overview on its versatile biological behavior. Eur. J. Med. Chem. 97, 612 (2015).Google Scholar

  • 14.

    Honer, M., Gobbi, L., Martarello, L., Comley, R. A.: Radioligand development for molecular imaging of the central nervous system with positron emission tomography. Drug Discov. Today 19, 1936 (2014).Google Scholar

  • 15.

    Rahman, O., Takano, A., Amini, N., Dahl, K., Kanegawa, N., Långström, B., Farde, L., Halldin, C.: Synthesis of ([11C]carbonyl)raclopride and a comparison with ([11C]methyl)raclopride in a monkey PET study. Nucl. Med. Biol. 42, 893 (2015).Google Scholar

  • 16.

    Li, G. C., Zhang, R., Jiang, K. J., Chen, B.: Radiochemical synthesis and biological evaluation of 3-[4-(4-[18F]fluorobenzyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine as dopamine D4 receptor radioligand. Radiochim. Acta 102(6), 535 (2014).Google Scholar

  • 17.

    Li, G. C., Zhang, B. L., Xia, J. Y., Fang, Z. J.: Synthesis and receptor binding assay of indolin-2-one derivatives as dopamine D4 receptor ligands. Pharmazie 70, 511 (2015).Google Scholar

  • 18.

    Qaim, S. M., Clark, J. C., Crouzel, C., Guillaume, M., Helmeke, H. J., Nebeling, B., Pike, V. W., Stöcklin, G.: PET Radionuclide Production in Radiopharmaceuticals for Positron Emission Tomography. In: G. Stöcklin, V. W. Pike (Eds.), (1993) Kluwer, Dordrecht, p. 1.Google Scholar

  • 19.

    Lemaire, C., Damhaut, P., Plenevaux, A., Cantineau, R., Christiaens, L., Guillaume, M.: Synthesis of fluorine-18 substituted aromatic aldehydes and benzyl bromides, new intermediates for n.c.a [18F]fluorination. Int. J. Rad. Appl. Instrum. A. 43(4), 485 (1992).Google Scholar

  • 20.

    Damhaut, P., Cantineau, R., Lemaire, C., Plenevaux, A., Christiaens, L., Guillaume, M.: 2- and 4-[18F]fluorotropapride, two specific D2 receptor ligands for positron emission tomography: N.C.A. syntheses and animal studies. Int. J. Rad. Appl. Instrum. A. 43(10), 1265 (1992).Google Scholar

About the article

Received: 2016-02-22

Accepted: 2016-06-29

Published Online: 2016-09-17

Published in Print: 2016-12-01


Citation Information: Radiochimica Acta, Volume 104, Issue 12, Pages 897–903, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2597.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in