Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Print
ISSN
0033-8230
See all formats and pricing
More options …
Volume 104, Issue 12

Issues

Silver-based getters for 129I removal from low-activity waste

R. Matthew Asmussen
  • Corresponding author
  • Geosciences Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James J. Neeway
  • Geosciences Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amanda R. Lawter
  • Geosciences Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew Wilson
  • Geosciences Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikolla P. Qafoku
  • Geosciences Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-01 | DOI: https://doi.org/10.1515/ract-2016-2598

Abstract

A prominent radionuclide of concern in nuclear wastes, 129I, is present in low-activity wastes (LAW) at the Hanford site. Several Ag-containing materials were tested as immobilization agents, or “getters”, for I (as iodide, I) removal from deionized (DI) water and a liquid LAW simulant: Ag impregnated activate carbon (Ag–C), Ag exchanged zeolite (Ag–Z), and argentite. In anoxic batch experiments with DI water, the Ag–C and argentite were most effective, with maximum Kd values of 6.2 × 105 mL/g for the Ag–C and 3.7 × 105 mL/g for the argentite after 15 days. Surface area and Ag content were found to influence the performance of the getters in DI water. In the anoxic batch experiments with LAW simulant, Ag–Z vastly outperformed the other getters with Kd values of 2.2 × 104 mL/g at 2 h, which held steady until 15 days, compared with 1.8 × 103 mL/g reached at 15 days by the argentite. All getters were stable over long periods of time (i.e. 40 days) in DI water, while the Ag–Z and argentite were also stable in the LAW simulant. Ag–Z was found to have consistent I removal upon crushing to a smaller particle size and in the presence of O2, making it a strong candidate for the treatment of LAW containing I.

Keywords: Low activity waste; iodine; getters; Hanford site; separations

References

  • 1.

    Bird, G. A., Schwartz, W.: Distribution coefficients, Kds, for iodide in Canadian Shield Lake sediments under oxic and anoxic conditions. J. Environ. Radioactiv. 35, 261 (1997).Google Scholar

  • 2.

    Lefèvre, G., Bessière, J., Ehrhardt, J. -J., Walcarius, A.: Immobilization of iodide on copper(I) sulfide minerals. J. Environ. Radioact. 70, 73 (2003).Google Scholar

  • 3.

    Madsen, F. T.: Clay mineralogical investigations related to nuclear waste disposal. Clay Miner. 33, 109 (1998).Google Scholar

  • 4.

    Kaplan, D. I., Roberts, K. A., Schwehr, K. A., Lilley, M. S., Brinkmeyer, R., Denham, M. E., DiPrete, D., Li, H. -P., Powell, B. A., Xu, C., Yeager, C. M., Zhang, S., Santschi, P. H.: Evaluation of a radioiodine plume increasing in concentration at the Savannah River Site. Environmen. Sci. Technol. 45, 489 (2011).Google Scholar

  • 5.

    Takata, H., Zheng, J., Tagami, K., Aono, T., Fujita, K., Yamasaki, S. -I., Tsuchiya, N., Uchida, S.: Distribution coefficients (K d) of stable iodine in estuarine and coastal regions, Japan, and their relationship to salinity and organic carbon in sediments. Environ. Monit. Assess. 185, 3645 (2013).Google Scholar

  • 6.

    Szente, L., Fenyvesi, É., Szejtli, J.: Entrapment of iodine with cyclodextrins: potential application of cyclodextrins in nuclear waste management. Environ. Sci. Technol. 33, 4495 (1999).Google Scholar

  • 7.

    Grambow, B.: Mobile fission and activation products in nuclear waste disposal. J Contam. Hydrol. 102, 180 (2008).Google Scholar

  • 8.

    Brown, C. F., Geiszler, K. N., Lindberg, M. J.: Analysis of 129I in groundwater samples: Direct and quantitative results below the drinking water standard. Appl. Geochem. 22, 648 (2007).Google Scholar

  • 9.

    Lockrem, L. L.: Cast Stone Technology for Treatment and Disposal of Iodine-rich Caustic Waste Demonstration – Final Report RPP-RPT-26725 U.S. Department of Energy Office of River Protection, (2005).Google Scholar

  • 10.

    CH2MHILL.: Hanford Site Groundwater Monitoring Report for 2013 DOE/RL-2014-32 U.S. Department of Energy, (2014).Google Scholar

  • 11.

    Brookins, D. G.: Radionuclide behavior at the Oklo nuclear reactor. Gabon Waste Manage. 10, 285 (1990).Google Scholar

  • 12.

    Polyakov, A. S., Borisov, G. B., Moiseenko, N. I., Osnovin, V. I., Dzekun, E. G., Medvedev, G. M., Bel’tyukov, V. A., Dubkov, S. A., Filippov, S. N.: Experience in operating the ÉP-500/1R ceramic melter for vitrification of liquid high-level wastes. Atom. Energy 76, 181 (1994).Google Scholar

  • 13.

    Jantzen, C., Crawford, C., Burket, P., Daniel, W., Cozzi, A., Bannochie, C.: Radioactive Demonstrations of Fluidized Bed Steam Reforming (FBSR) as a Supplementary Treatment for Hanford’s Low Activity Waste (LAW) and Secondary Wastes (SW)-# 11593 Proceedings of WM2011 Phoenix, AZ, (2011).Google Scholar

  • 14.

    Qafoku, N. P., Neeway, J. J., Lawter, A. R., Levitskaia, T. G., Serne, R. J., Westsik, J. H., Valenta Snyder, M. M.: Technetium and Iodine Getters to Improve Cast Stone Performance PNNL-23282 Pacific Northwest National Laboratory, (2014).Google Scholar

  • 15.

    Pierce, E. M., Mattigod, S. V., Serne, R. J., Icenhower, J. P., Scheele, R. D., Um, W., Qafoku, N., Westsik, J. H.: Review of Potential Candiate Stabilization Technologies for Liquid and Solid Secondary Waste Streams PNNL-19122 Pacific Northwest National Laboratory, Richland, Washington, (2010).Google Scholar

  • 16.

    Ikeda, Y., Sazarashi, M., Tsuji, M., Seki, R., Yoshikawa, H.: Adsorption of I Ions on Cinnabar for 129-I Waste Manage. Radiochim. Acta 65, 195 (1994).Google Scholar

  • 17.

    Mattigod, S. V., Serne, R. J., Fryxell, G. E.: Selection and Testing of “Getters” for Adsorption of Iodine-129 and Technetium-99: A Review PNNL-14208 Pacific Northwest National Laboratory, Richland, Washington, (2003).Google Scholar

  • 18.

    Krumhansl, J. L., Pless, J. D., Chwirka, J. B., Holt, K. C.: Yucca Mountain Project Getter Program Results (Year 1) SAND2006-3869 Sandia National Laboratory, Albuquerque, New Mexico, (2006).Google Scholar

  • 19.

    Steinberg, S., Schmett, G., Kimble, G., Emerson, D., Turner, M., Rudin, M.: Immobilization of fission iodine by reaction with insoluble natural organic matter. J. Radioanal. Nucl. Chem. 277, 175 (2008).Google Scholar

  • 20.

    Zhang, X., Stewart, S., Shoesmith, D. W., Wren, J. C.: Interaction of aqueous iodine species with Ag2O/Ag surfaces. J. Electrochem. Soc. 154, F70 (2007).Google Scholar

  • 21.

    Zhang, H., Gao, X., Guo, T., Li, Q., Liu, H., Ye, X., Guo, M., Wu, Z.: Adsorption of iodide ions on a calcium alginate–silver chloride composite adsorbent. Colloid. Surface. A. 386, 166 (2011).Google Scholar

  • 22.

    Mnasri, N., Charnay, C., de Ménorval, L.-C., Moussaoui, Y., Elaloui, E., Zajac, J.: Silver nanoparticle-containing submicron-in-size mesoporous silica-based systems for iodine entrapment and immobilization from gas phase. Micropor. Mesopor. Mat. 196, 305 (2014).Google Scholar

  • 23.

    Zenki, M., Iwadou, Y.: Repetitive determination of chloride using the circulation of the reagent solution in closed flow-through system Talanta 58, 1055 (2002).Google Scholar

  • 24.

    Russel, R. L., Westsik Jr, J., Swanberg, D. J., Eibling, R. E., Cozzi, A. D., Lindberg, M. J., Josephson, G. B., Rinehart, D. E.: Letter Report: LAW Simulant Development for Cast Stone Screening Tests PNNL-22352 Rev.0, Pacific Northwest National Laboratory, Richland, WA, (2013).Google Scholar

  • 25.

    Bell Jr, F. A.: Review of effects of silver impregnated carbon filters on microbial water quality. J. Am. Water Works Assoc. 83, 74 (1991).Google Scholar

  • 26.

    Karanfil, T., Moro, E. C., Serkiz, S. M.: Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Environ. Technol. 26, 1255 (2005).Google Scholar

  • 27.

    Hoskins, J. S., Karanfil, T., Serkiz, S. M.: Removal and sequestration of iodide using silver-impregnated activated carbon. Environ. Sci Technol 36, 784 (2002).Google Scholar

  • 28.

    Ho, P. C., Kraus, K. A.: Adsorption on inorganic materials – VIII: adsorption of iodide on AgCl-filled carbon. J. Inorg. Nucl. Chem. 43, 583 (1981).Google Scholar

  • 29.

    Sheppard, G. P., Hriljac, J. A., Maddrell, E. R., Hyatt, N. C.: Silver zeolites: iodide occlusion and conversion to sodalite – a potential 129I waste form? MRS Proceedings, Vol. 932, 36.1 (2006). doi: .CrossrefGoogle Scholar

  • 30.

    Faghihian, H., Ghannadi Maragheh, M., Malekpour, A.: Adsorption of radioactive iodide by natural zeolites. J. Radioanal. Nucl. Chem. 254, 545 (2002).Google Scholar

  • 31.

    Kikuchi, M., Kitamura, M., Yusa, H., Horiuchi, S.: Removal of radioactive methyl iodide by silver impregnated alumina and zeolite. Nucl. Eng. Des. 47, 283 (1978).Google Scholar

  • 32.

    Chapman, K. W., Chupas, P. J., Nenoff, T. M.: Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J Am Chem Soc 132, 8897 (2010).Google Scholar

  • 33.

    Jubin, R. T.: A Literature Survey of Methods to Remove Iodine from off Gas Streams using Solid Sorbents ORNL/TM-6607 Oak Ridge National Laboratory, (1979).Google Scholar

  • 34.

    Kaplan, D. I., Mattigod, S. V., Parker, K. E., Iversen, G.: Experimental Work in Support of the 129I Disposal Special Analysis WSRC-TR-2000-00283 Westinghouse Savannah River Company, Aiken, South Carolina, (2000).Google Scholar

  • 35.

    Westsik, J. H., Piepel, G. F., Lindberg, M. J., Heasler, P. G., Mercier, T. M., Russel, R. L., Cozzi, A. D., Daniel, W. E., Eibling, R. E., Hansen, E. K., Reigal, M. R., Swanberg, D. J.: Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests PNNL-22747, SRNL-STI-2013-00465 Rev. 0, Pacific Northwest National Laboratory, Richland, Washington and Savannah River National Laboratory, Aiken, South Carolina, (2013).Google Scholar

  • 36.

    Certa, P. J., Empey, P. A.: River Protection Project System Plan ORP-11242 Revision 6, Washington River Protection Solutions, LLC, Richland, Washington, (2011).Google Scholar

  • 37.

    Brunauer, S., Emmett, P. H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).Google Scholar

  • 38.

    ASTM.: Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass ASTM D2216-98 ASTM Standards, USA, (2005).Google Scholar

  • 39.

    Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., Yaghi, O. M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. A. Sci. 103, 10186 (2006).Google Scholar

About the article

Received: 2016-03-01

Accepted: 2016-06-27

Published Online: 2016-09-01

Published in Print: 2016-12-01


Citation Information: Radiochimica Acta, Volume 104, Issue 12, Pages 905–913, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2598.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dien Li, Daniel I. Kaplan, Allison Sams, Brian A. Powell, and Anna S. Knox
Journal of Environmental Radioactivity, 2018, Volume 192, Page 505
[2]
R. Matthew Asmussen, Josef Matyáš, Nikolla P. Qafoku, and Albert A. Kruger
Journal of Hazardous Materials, 2018

Comments (0)

Please log in or register to comment.
Log in