Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Print
ISSN
0033-8230
See all formats and pricing
More options …
Volume 104, Issue 12

Issues

Separation of no-carrier-added 203Pb, a surrogate radioisotope, from proton irradiated natTl2CO3 target using calcium alginate hydrogel beads

Kangkana Sarkar / Susanta Lahiri / Kamalika Sen
Published Online: 2016-11-09 | DOI: https://doi.org/10.1515/ract-2016-2622

Abstract

203Pb is a promising radioisotope in the field of medical science as an imaging surrogate of 212Pb. In the present investigation 203Pb was produced by proton irradiation of natural Tl2CO3 target and was separated from the bulk Tl target using calcium alginate (CA) hydrogel beads with a high separation factor (3.8×104 at 10−3 M HNO3). During the separation process 203Pb was encapsulated in CA beads and desorption of the radioisotope could only be achieved in 1M HNO3. Possibility of Tl uptake was also checked in Fe doped CA (Fe-CA) beads after oxidation of Tl(I) to Tl(III) by sodium bismuthate. No significant uptake of Tl(III) was noticed in the Fe-CA beads. The matrix is therefore suitable for isolation of 203Pb from the target as well as its storage in the bead for therapeutic as well as diagnostic purpose.

Keywords: 203Pb; no-carrier-added; calcium alginate; iron doped calcium alginate

References

  • 1.

    Qathama, A. A., Prieto, J. M.: Natural products with therapeutic potential in melanoma metastasis. Nat. Prod. Rep. 32, 1170 (2015).Google Scholar

  • 2.

    Bhatia, S., Tykodi, S. S., Thompson, J. A.: Treatment of metastatic melanoma: an overview. Oncology. 23, 488 (2009).Google Scholar

  • 3.

    Chart of Nuclides. Available at: http://www.nndc.bnl.gov/chart. Accessed: 19.03.2016.

  • 4.

    Miao, Y., Hyaloids, M., Fisher, D. R., Shelton, T., Moore, H., Wester, D.W., Fritzberg, A. R., Winkelmann, C. T., Hoffman, T., Quinn, T. P.: Melanoma therapy via peptide-targeted α-radiation. Clin. Cancer. Res. 11, 5616 (2005).Google Scholar

  • 5.

    Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E.: Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 34, 2222 (1993).Google Scholar

  • 6.

    Garmestani, K., Milenic, D. E., Brady, E. D., Plascjak, P. S., Brechbiel, M. W.: Purification of cyclotron-produced 203Pb for labeling herceptin. Nucl. Med. Biol. 32, 301 (2005).Google Scholar

  • 7.

    Chappell, L. L., Dadachova, E., Milenic, D. E., Garmestani, K., Wu, C., Brechbiel, M. W.: Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl. Med. Biol. 27, 93 (2000).Google Scholar

  • 8.

    Chong, H. S., Milenic, D. E., Garmestani, K., Brady, E. D., Arora, H., Pfiester, C., Brechbiel, M. W.: In vitro and in vivo evaluation of novel ligands for radioimmuno therapy. Nucl. Med. Biol. 33, 459 (2006).Google Scholar

  • 9.

    Fisher, D. R.: Final report of CRADA PNNL/288, PLA1 (GIPP Project PNNL T2-291) (2012), Pacific Northwest National Laboratory Richland, Washington, USA.

  • 10.

    Miao, Y., Figueroa, S. D., Fisher, D. R., Moore, H. A., Testa, R. F., Hoffman, T. J., Quinn, T. P.: 203Pb-labeled α-melanocyte-stimulating hormone peptide as an imaging probe for melanoma detection. J. Nucl. Med. 49, 823 (2008).Google Scholar

  • 11.

    Bajo, S., Wyttenbach, A.: Separation of Tl(I)-Pb(II) by liquid-liquid extraction with diethyldithiocarbamic acid isolation of 201Tl. J. Radioanal. Nucl. Chem. 60, 173 (1980).Google Scholar

  • 12.

    Lagunas-Solar, M. C., Jungerman, J. A., Peek, N. F., Theus, R. M.: Thallium-201 yields and excitation functions for the lead radioactivities produced by irradiation of natural thallium with 15–60 MeV protons. Int. J. Appl. Radiat. Isot. 29, 159 (1978).Google Scholar

  • 13.

    Qaim, S. M., Weinreich, R., Ollig, H.: Production of 201Tl and 203Pb via proton induced nuclear reactions on natural thallium. Int. J. Appl. Radiat. Isot. 30, 85 (1979).Google Scholar

  • 14.

    Van der Walt, T. N., Coetzee, P. P.: Separation of 203Pb by ion-exchange chromatography on chelex 100 after production of 203Pb by the Pb(p,  xn)203BiECβ+203Pb nuclear reaction. Talanta. 36, 451 (1989).Google Scholar

  • 15.

    Ditrói, F., Tárkányi, F., Takács, S., Hermanne, A.: Proton-induced cross sections of nuclear reactions on lead up to 37 MeV. Appl. Radiat. Isot. 90, 208 (2014).Google Scholar

  • 16.

    Nayak, D., Lahiri, S., Ramaswami, A.: Alternative radiochemical heavy ion activation methods for the production and separation of thallium radionuclides. Appl. Radiat. Isot. 57, 483 (2002).Google Scholar

  • 17.

    Kayfus, G. P., Boothe, T. E., Campbell, J. A., Finn, R. D., Gilson, A. J.: Chemical recovery of thallium-203 following production and separation of lead-201. J. Radioanal Chem. 68, 269 (1982).Google Scholar

  • 18.

    Sodd, V. J., Scholz, K. L., Blue, J. W.: Separation of thallium-201 from lead-201 using N-benzylaniline. J. Radioanal Chem. 68, 277 (1982).Google Scholar

  • 19.

    Van der Walt, T. N., Strelow, F. W., Haasbroek, F. J.: Separation of lead-203 from cyclotron-bombarded thallium targets by ion-exchange chromatography. Talanta 29, 583 (1982).Google Scholar

  • 20.

    Toribara, T. V., Koval, L.: The separation of 203Pb from a thallium target. Int. J. Appl. Radiat. Isot. 29, 196 (1978).Google Scholar

  • 21.

    Dutta, B., Maiti, M., Lahiri, S.: Production and separation of no-carrier-added thallium isotopes from proton irradiated natHg2Cl2 matrix. Appl. Radiat. Isot. 69, 1337 (2011).Google Scholar

  • 22.

    Lahiri, S., Roy, K.: A green approach for sequential extraction of heavy metals from Li irradiated Au target. J. Radioanal. Nucl. Chem. 281, 531 (2009).Google Scholar

  • 23.

    Lahiri, S., Sarkar, S.: Studies on 66,67Ga- and 199Tl-poly(N-vinylpyrrolidone) complexes. Appl. Radiat. Isotopes. 65, 309 (2007).Google Scholar

  • 24.

    Lahiri, S., Sarkar, S.: Separation of no-carrier-added Tl and Pb radionuclides using poly (N-vinylpyrrolidone). J. Radioanal. Nucl. Chem. 277, 513 (2008).Web of ScienceGoogle Scholar

  • 25.

    Nayak, D., Datta Samanta, T., Laskar, S., Lahiri, S.: Application of tracer packet technique for studying metal – proteininteractions with Erythrinavariegata Linn. seed proteins. J. Radioanal. Nucl. Chem. 271, 387 (2007).Google Scholar

  • 26.

    Nayak, D., Lahiri, S., Mukhopadhyay, A., Pal, R.: Application of tracer packet technique to the study of the bio-sorption of heavy and toxic metal radionuclides by algae. J. Radioanal. Nucl. Chem. 256, 535 (2003).Google Scholar

  • 27.

    Sun, J., Tan, H.: Alginate-based biomaterials for regenerative medicine applications. Material. 6, 1285 (2013).Google Scholar

  • 28.

    Desai, R. M., Koshy, S. T., Hilderbrand, S. A., Mooney, D. J., Josh, N. S.: Versatile click alginate hydrogels crosslinked via tetrazineenorbornene chemistry. Biomaterials. 50, 30 (2015).Google Scholar

  • 29.

    Strasdat, B., Bunjes, H.: Development of a new approach to investigating the drug transfer from colloidal carrier systems applying lipid nanosuspension-containing alginate microbeads as acceptor. Int. J. Pharma. 489, 203 (2015).Google Scholar

  • 30.

    Schmitt, A., Rödel, P., Anamur, C., Seeliger, C., Imhoff, A. B., Herbst, E., Vogt, S., van Griensven, M., Winter, G., Engert, J.: Calcium alginate gels as stem cell matrix – making paracrine stem cell activity available for enhanced healing after surgery. PLoS One. 10, e0118937 (2015).Google Scholar

  • 31.

    Maity, S., Datta, A., Lahiri, S., Ganguly, J.: Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Adv. 5, 89338 (2015).Google Scholar

  • 32.

    Nayak, D., Lahiri, S.: Biosorption of toxic, heavy, no-carrier added radionuclides by calcium alginate beads. J. Radioanal. Nucl. Chem. 267, 59 (2006).Google Scholar

  • 33.

    Mandal, A., Lahiri, S.: Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J. Radioanal. Nucl. Chem. 290, 115 (2011).Google Scholar

  • 34.

    Banerjee, A., Nayak, D., Lahiri, S.: Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl. Radiat. Isot. 65, 769 (2007).Google Scholar

  • 35.

    Banerjee, A., Nayak, D., Lahiri, S.: New method of synthesis of iron doped calcium alginate beads and determination of iron content in the beads by radiometric method. Biochem. Eng. J. 33, 260 (2007).Google Scholar

  • 36.

    Leick, S., Henning, S., Degen, P., Suter, D., Rehage, H.: Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus. Phys. Chem. Chem. Phys. 12, 2950 (2010).Google Scholar

  • 37.

    Verweij, W.: ‘CHEAQS PRO’: a program for calculating chemical equilibria in aquatic systems’ (2005). Available at: http://home.tiscali.nl/cheaqs/. Accessed: 19.08.2015.

About the article

Received: 2016-04-29

Accepted: 2016-06-27

Published Online: 2016-11-09

Published in Print: 2016-12-01


Citation Information: Radiochimica Acta, Volume 104, Issue 12, Pages 891–896, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2622.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Susanta Lahiri, Dibyasree Choudhury, and Kamalika Sen
Journal of Radioanalytical and Nuclear Chemistry, 2018
[2]
Kangkana Sarkar, Kamalika Sen, and Susanta Lahiri
Journal of Radioanalytical and Nuclear Chemistry, 2017
[3]
Kamalika Sen, Kangkana Sarkar, and Susanta Lahiri
Journal of Radioanalytical and Nuclear Chemistry, 2017

Comments (0)

Please log in or register to comment.
Log in