Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

12 Issues per year


IMPACT FACTOR 2017: 1.202

CiteScore 2017: 1.22

SCImago Journal Rank (SJR) 2017: 0.409
Source Normalized Impact per Paper (SNIP) 2017: 0.869

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 104, Issue 8

Issues

Recovery of Ra-223 from natural thorium irradiated by protons

Aleksandr N. Vasiliev
  • Corresponding author
  • Lomonosov Moscow State University, Moscow, Russia
  • Institute for Nuclear Research of Russian Academy of Sciences, Moscow-Troitsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valentina S. Ostapenko
  • Lomonosov Moscow State University, Moscow, Russia
  • Institute for Nuclear Research of Russian Academy of Sciences, Moscow-Troitsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena V. Lapshina / Stanislav V. Ermolaev / Sergey S. Danilov / Boris L. Zhuikov / Stepan N. Kalmykov
  • Lomonosov Moscow State University, Moscow, Russia
  • Institute for Nuclear Research of Russian Academy of Sciences, Moscow-Troitsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-07 | DOI: https://doi.org/10.1515/ract-2015-2549

Abstract

Irradiation of natural thorium with medium-energy protons is considered to be a prospective approach to large-scale production of 225Ac and 223Ra. In addition to the earlier-developed method of 225Ac isolation, the present work focuses on the simultaneous recovery of.223Ra from the same thorium target. Radiochemical procedure is based on liquid-liquid extraction, cation exchange and extraction chromatography. The procedure provides separation of radium from spallation and fission products generated in the thorium target. High chemical yield (85– 90%) and radionuclide purity of 223Ra (> 99.8% except 224Raand 225Ra isotopes) have been achieved.

Keywords:: Thorium metal; proton iradiation; radium isotopes; ion exchange; extraction chromatography

References

  • 1.

    Zimmermann, R.: Nuclear Medicine. Radioactivity for Diagnosis and Therapy, Lez Ulis: EDP Sciences (2007) 173 p.Google Scholar

  • 2.

    Guseva, L. I., Tikhomirova, G. S.: A 211Pb generator as a methodical approach to studying the chemistry of element 114 in solutions, Radiokhimiya 44(2), 154 – 157 (2002).Google Scholar

  • 3.

    Trewartha, D., Carter, K.: Advances in prostate cancer treatment, Nat. Rev. Drug Discov. 12(11), 823–824 (2013).Google Scholar

  • 4.

    Parker, C., Nilsson, S., Heinrich, D., Helle, S. I., O’Sullivan, J. M., Fosså, S. D., Sartor, O.: Alpha emitter radium-223 and survival in metastatic prostate cancer, N. Engl. J. Med. 369(3), 213–223 (2013).Google Scholar

  • 5.

    Nilsson, S., Larsen, R. H., Fosså, S. D., Balteskard, L., Borch, K. W., Westlin, J. E., Bruland, Ø. S.: First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases, Clin. Cancer Res. 11(12), 4451–4459 (2005).Google Scholar

  • 6.

    Miao, Y., Hylarides, M., Fisher, D. R., Shelton, T., Moore, H., Wester, D. W., Fritzberg, A. R., Winkelmann, Ch. T., Hoffman, T., Quinn, T. P.: Melanoma therapy via peptide-targeted alpharadiation, Clin. Cancer Res. 11, 5616–5626 (2005).Google Scholar

  • 7.

    Harrington, K. J., Mohammadtah, S., Uster, P. S., Glass, D., Peters, A. M., Stewart, J. S.: Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes, Clin. Cancer Res. 7(2), 243 (2001).Google Scholar

  • 8.

    Henriksen, G., Schoultz, B. W., Michaelsen, T. E., Bruland, Ø. S., Larsen, R. H.: Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides, Nucl. Med. Biol. 31, 441–449 (2004).Google Scholar

  • 9.

    Vengalil, S., O’Sullivan, J. M., Parker, C. C.: Use of radionuclides in metastatic prostate cancer: pain relief and beyond, Curr. Opin. Support. Palliat. Care 6(3), 310–315 (2012).Web of ScienceGoogle Scholar

  • 10.

    Kozempel, J., Vlk, M., Malkova, E., Bajzıkova, A., Barta, J., Santos-Oliveira, R., Malta Rossi, A.: Prospective carriers of 223Ra for targeted alpha therapy, J. Radioanal. Nucl. Chem. 304, 443–447 (2015).Google Scholar

  • 11.

    Henriksen, G., Hoff, P., Alstad, J., Larsen, R. H.: 223Ra for Endoradiotherapeutic applications prepared from animmobilized 227Ac/227Th source, Radiochim. Acta 89, 661–666 (2001).Google Scholar

  • 12.

    Peterson, S.: In: Seaborg, G. T., Katz, J. J., Manning, W. U. (eds), Transuranium elements, Part II, 1st edn. McGraw-Hill, New York (1949).Google Scholar

  • 13.

    Kuznetsov, R. A., Butkalyuk, P. S., Tarasov, V. A., Baranov, A. Yu., Butkalyuk, I. L., Romanov, E. G., Kupriyanov, V. N., Kazakova, E. V.: Yields of activation products in 226Ra irradiation in the high-flux SM reactor, Radiochemistry 54(4), 383– 387 (2012).Google Scholar

  • 14.

    Bagheri, R., Afarideh, H., Ghannadi-Maragheh, M., Bahrami-Samani, A., Shirvani-Arani, S.: Production of 224Ra from 226Ra in Tehran Research Reactor for treatment of bone metastases, J. Radioanal. Nucl. Chem. 304(3), 1185–1191 (2015).Web of ScienceGoogle Scholar

  • 15.

    Guseva, L. I., Tikhomirova, G. S., Dogadkin, N. N.: Anionexchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac 223Ra Generator, Radiochemistry 46(1), 58–62 (2004).Google Scholar

  • 16.

    Zhuikov, B. L., Kalmykov, S. N., Ermolaev, S. V., Aliev, R. A., Kokhanyuk, V. M., Matushko, V. L., Tananaev, I. G., Myasoedov, B. F.: Production of 225Ac and 223Ra by irradiation of Th with accelerated protons Radiochemistry 53, 1, 73–80 (2011).Google Scholar

  • 17.

    Ermolaev, S. V., Zhuikov, B. L., Kokhanyuk, V. M., Matushko, V. M., Kalmykov, V. L., Aliev, S. N., Tananaev, I. G., Myasoedov, B. F.: Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV, Radiochim. Acta 100, 1–7 (2012).Web of ScienceGoogle Scholar

  • 18.

    Aliev, R. A., Ermolaev, S. V., Vasiliev, A. N., Ostapenko, V. S., Lapshina, E. V., Zhuikov, B. L., Zakharov, N. V., Pozdeev, V. V., Kokhanyuk, V. M., Myasoedov, B. F., Kalmykov, S. N.: Isolation of medicine-applicable actinium-225 from thorium targets irradiated by medium-energy protons, Solv. Extr. Ion Exch. 32(5), 468–477 (2014).Web of ScienceGoogle Scholar

  • 19.

    Radchenko, V., Engle, J. W., Wilson, J. J., Maassen, J. R., Nortier, F. M., Taylor, W. A., Birnbaum, E. R., Hudston, L. A., John, K. D., Fassbender, M. E.: Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes, J. Chromatogr. A 1380 55–63 (2015).Google Scholar

  • 20.

    National Nuclear Data Center, Brookhaven National Laboratory, USA, http://www.nndc.bnl.gov/nudat2.Google Scholar

  • 21.

    Weigl, M., Geist, A., Müllich, U.,Gompper, K.: Kinetics of americium III) extraction and back extraction with BTP, Solv. Extr. Ion Exch. 24(6), 845–860 (2006).Google Scholar

  • 22.

    Horwitz, P. E., Chiarizia, R., Dietz, M. L.: A novel strontiumselective extraction chromatographic resin, Solv. Extr. Ion Exch. 10(2), 313–336 (1992).Google Scholar

  • 23.

    Berthod, A., Carda-Broch, S.: Determination of liquid–liquid partition coefficients by separation methods, J. Chromatogr. A 1037(1), 3–14 (2004).Google Scholar

  • 24.

    Hiraoka, M.: Crown Compounds: Their Characteristics and Applications, Elsevier: New York, 1982.Google Scholar

  • 25.

    Horwitz, P.: Radium Separation Method, 57-th Radiobioassay & Radiochemical Measurements Conference Sandestin, Florida, 431–435 (2011).Google Scholar

  • 26.

    Schulz, W. W., Navratil, J. D.: Science and technology of tributyl phosphate. Vol. I: Synthesis, properties, reactions and analysis, Rockwell Hanford Operations, Richland, WA (1984).Google Scholar

  • 27.

    Šulcek, Z., Doležal J., Michal, J., Sychra, V.: Rapid analytical methods for the determination of metals and inorganic materials – XIII: Determination of tin in metallic antimony, Talanta 10(1), 3–11 (1963).Google Scholar

  • 28.

    Hogan, J. J., Gadioli, E., Gadioli-Erba, E., Chung, C.: Fissionability of nuclides in the thorium region at excitation energies to 100 MeV, Phys. Rev. C 20(5), 1831, (1979).Google Scholar

  • 29.

    Weidner, J. W., Mashnik, S. G., John, K. D., Hemez, F., Ballard, B., Bach, H., Birnbaum, E. R., Bitteker, L. J., Couture, A., Dry, D., Fassbender, M. E., Gulley, M. S., Jackman, K. R., Ullmann, J. L., Wolfsberg, L. E., Nortier, F. M.: Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV, Appl. Rad. Isot. 70, 2602–2607 (2012).Google Scholar

About the article

Received: 2015-11-23

Accepted: 2016-02-22

Published Online: 2016-04-07

Published in Print: 2016-08-01


Citation Information: Radiochimica Acta, Volume 104, Issue 8, Pages 539–547, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2015-2549.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Tara Mastren, Valery Radchenko, Allison Owens, Roy Copping, Rose Boll, Justin R. Griswold, Saed Mirzadeh, Lance E. Wyant, Mark Brugh, Jonathan W. Engle, Francois M. Nortier, Eva R. Birnbaum, Kevin D. John, and Michael E. Fassbender
Scientific Reports, 2017, Volume 7, Number 1
[3]
A. N. Vasiliev, A. Severin, E. Lapshina, E. Chernykh, S. Ermolaev, and S. Kalmykov
Journal of Radioanalytical and Nuclear Chemistry, 2017, Volume 311, Number 2, Page 1503

Comments (0)

Please log in or register to comment.
Log in