Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 105, Issue 1

Issues

Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions: formation of Na–Np(V)–OH solid phases at 22 °C

Vladimir G. Petrov
  • Corresponding author
  • Lomonosov Moscow State University, Department of Chemistry, 119991, Leninskie gory, 1 bld. 3, Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Fellhauer
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xavier Gaona
  • Corresponding author
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kathy Dardenne
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörg Rothe
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stepan N. Kalmykov
  • Lomonosov Moscow State University, Department of Chemistry, 119991, Leninskie gory, 1 bld. 3, Moscow, Russia
  • NRC Kurchatov Institute, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcus Altmaier
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-30 | DOI: https://doi.org/10.1515/ract-2016-2614

Abstract

The solubility of Np(V) was investigated at T=22±2°C in alkaline NaCl solutions of different ionic strength (0.1–5.0 M). The solid phases controlling the solubility at different –log10 mH+(pHm) and NaCl concentration were characterized by XRD, quantitative chemical analysis, SEM–EDS and XAFS (both XANES and EXAFS). Aqueous phases in equilibrium with Np(V) solids were investigated for selected samples within 8.9≤pHm≤10.3 by UV-vis/NIR absorption spectroscopy. In 0.1 M NaCl, the experimental solubility of the initial greenish NpO2OH(am) solid phase is in good agreement with previous results obtained in NaClO4 solutions, and is consistent with model calculations for fresh NpO2OH(am) using the thermodynamic data selection in NEA–TDB. Below pHm~11.5 and for all NaCl concentrations studied, Np concentration in equilibrium with the solid phase remained constant during the timeframe of this study (~2 years). This observation is in contrast to the aging of the initial NpO2OH(am) into a more crystalline modification with the same stoichiometry, NpO2OH(am, aged), as reported in previous studies for concentrated NaClO4 and NaCl. Instead, the greenish NpO2OH(am) transforms into a white solid phase in those systems with [NaCl]≥1.0 M and pHm≥11.5, and into two different pinkish phases above pHm~13.2. The solid phase transformation is accompanied by a drop in Np solubility of 0.5–2 log10-units (depending upon NaCl concentration). XANES analyses of green, white and pink phases confirm the predominance of Np(V) in all cases. Quantitative chemical analysis shows the incorporation of Na+ in the original NpO2OH(am) material, with Na:Np≤0.3 for the greenish solids and 0.8≤Na:Np≤1.6 for the white and pinkish phases. XRD data confirms the amorphous character of the greenish phase, whereas white and pink solids show well-defined but discrepant XRD patterns. Furthermore, the XRD pattern collected for one of the pink solid phases match the data recently reported for NaNpO2(OH)2(cr). UV-vis/NIR spectra collected in 0.1–5.0 M NaCl solutions show the predominance of NpO2+ (≥80%) at pHm≤10.3. This observation is consistent with the Np(V) hydrolysis scheme currently selected in the NEA–TDB. This work provides sound evidences on the formation of ternary Na–Np(V)–OH solid phases in Na-rich hyperalkaline solutions and ambient temperature conditions. Given the unexpectedly high complexity of the system, further experimental efforts dedicated to assess the thermodynamic properties of these solid phases are needed, especially in view of their likely relevance as solubility controlling Np(V) solid phases in Na-rich systems such as saline and cement-based environments in the context of the safety assessment for nuclear waste disposal.

Keywords: Np(V); solubility; hydrolysis; thermodynamic data; Na–Np(V)–OH solid phases

References

  • 1.

    Kaplan, D. I., Serne, R. J., Owen, A. T., Conca, J., Wietsa, T. W., Gervais, T. L.: Radionuclide adsorption distribution coefficients measured in Hanford sediments for the low level waste Performance Assessment project; PNNL–11485, Pacific Northwest Laboratory, (1996).

  • 2.

    Kalmykov, S. N., Kriventsov, V. V., Teterin, Y. A., Novikov, A. P.: Plutonium and neptunium speciation bound to hydrous ferric oxide colloids. Cr. Chim. 10, 1060 (2007).CrossrefGoogle Scholar

  • 3.

    Novikov, A. P., Malikov, D. A., Vinokurov, S. E., Kazinskaya, I. E., Goryachenkova, T. A., Myasoedov, B. F.: Concentration of neptunium from the ground waters of the Karachai Lake contamination area. J. Radioanal. Nucl. Ch. 289, 431 (2011).CrossrefGoogle Scholar

  • 4.

    Kaszuba, J. P., Runde, W. H.: The aqueous geochemistry of neptunium: dynamic control of soluble concentrations with applications to nuclear waste disposal. Environ. Sci. Technol. 33, 4427 (1999).CrossrefGoogle Scholar

  • 5.

    Altmaier, M., Vercouter, T.: Aquatic chemistry of the actinides: aspects relevant to their environmental behaviour. In: C. Poinssot, H. Geckeis (Eds.), Radionuclide Behaviour in the Natural Environment: Science, Implications and Lessons for the Nuclear Industry (2012), Woodhead Publishing, Cambridge.Google Scholar

  • 6.

    Altmaier, M., Gaona, X., Fanghänel, T.: Recent advances in aqueous actinide chemistry and thermodynamics. Chem. Rev. 113, 901 (2013).PubMedCrossrefGoogle Scholar

  • 7.

    Lemire, R. J., Fuger, J., Nitsche, H., Potter, P. E., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, P., Wanner, H.: Chemical Thermodynamics, vol. 4. Neptunium and Plutonium. (2001), (OECD, NEA-TDB) Elsevier, North Holland, Amsterdam.Google Scholar

  • 8.

    Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M. H.: Chemical thermodynamics Vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. (2003) (OECD, NEA-TDB) Elsevier, North Holland, Amsterdam.Google Scholar

  • 9.

    Brown, P. L., Curti, E., Grambow, B.: Chemical thermodynamics, vol. 8. Chemical Thermodynamics of Zirconium. (2005) (OECD, NEA-TDB) Elsevier, North Holland, Amsterdam.Google Scholar

  • 10.

    Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R., Preis, W.: Chemical thermodynamics, vol. 6. Chemical Thermodynamics of Nickel. (2005), (OECD, NEA-TDB) Elsevier, North Holland, Amsterdam.Google Scholar

  • 11.

    Olin, A., Noläng, B., Öhman, L. O., Osadchii, E., Rosen, E.: Chemical Thermodynamics, vol. 7. Chemical Thermodynamics of Selenium. (2005), (OECD, NEA-TDB) Elsevier, North Holland, Amsterdam.Google Scholar

  • 12.

    Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics, vol. 11. Chemical Thermodynamics of Thorium. (2009), (OECD, NEA-TDB) Elsevier, North Holland, Amsterdam.Google Scholar

  • 13.

    Lemire, R. J., Berner, U., Musikas, C., Palmer, D. A., Taylor, P., Tochiyama, O.: Chemical Thermodynamics, vol. 13. Iron part I. (2013), (OECD, NEA-TDB) Elsevier, Paris.Google Scholar

  • 14.

    Wieland, E., Van Loon, L. R.: Cementitious near-field sorption database for performance assessment of an ILW repository in Opalinus clay; Nagra Technical Report NTB 02-20, (2002), Nagra, Wettingen, Switzerland.Google Scholar

  • 15.

    Gaona, X., Dähn, R., Tits, J., Scheinost, A. C., Wieland, E.: Uptake of Np(IV) by C-S-H phases and cement paste: an EXAFS study. Environ. Sci. Technol. 45, 8765 (2011).PubMedCrossrefGoogle Scholar

  • 16.

    Tits, J., Gaona, X., Laube, A., Wieland, E.: Influence of the redox state on the neptunium sorption under alkaline conditions: batch sorption studies on titanium dioxide and calcium silicate hydrates. Radiochim. Acta 102, 385 (2014).Google Scholar

  • 17.

    Husar, R., Weiss, S., Hennig, C., Hubner, R., Ikeda-Ohno, A., Zanker, H.: Formation of Neptunium(IV)-Silica Colloids at Near-Neutral and Slightly Alkaline pH. Environ. Sci. Technol. 49, 665 (2015).CrossrefGoogle Scholar

  • 18.

    Turner, D. R., Pabalan, R. T., Bertetti, F. P.: Neptunium(V) sorption on montmorillonite: an experimental and surface complexation modeling study. Clay Clay Miner. 46, 256 (1998).CrossrefGoogle Scholar

  • 19.

    Bradbury, M. H., Baeyens, B.: Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim. Cosmochim. Acta 69, 875 (2005).Google Scholar

  • 20.

    Wu, T., Amayri, S., Drebert, J., Van Loon, L. R., Reich, T.: Neptunium(V) sorption and diffusion in opalinus clay. Environ. Sci. Technol. 43, 6567 (2009).PubMedCrossrefGoogle Scholar

  • 21.

    Amayri, S., Jermolajev, A., Reich, T.: Neptunium(V) sorption on kaolinite. Radiochim. Acta 99, 349 (2011).CrossrefGoogle Scholar

  • 22.

    Frohlich, D. R., Amayri, S., Drebert, J., Reich, T.: Sorption of neptunium(V) on Opalinus Clay under aerobic/anaerobic conditions. Radiochim. Acta 99, 71 (2011).CrossrefGoogle Scholar

  • 23.

    Kraus, K. A., Nelson, F.: The hydrolytic behavior of uranium and transuranic elements. Tech. Rep. AECD-1864, (1948), Oak Ridge National Laboratory, Oak Ridge, Tennesse.Google Scholar

  • 24.

    Sevost’yanova, E. P., Khalturin, G. V.: Hydrolytic behavior of neptunium(V). Sov. Radiochem. 18, 738 (1976).Google Scholar

  • 25.

    Maya, L.: Hydrolysis and carbonate complexation of dioxoneptunium(V) in 1.0 M NaClO4 at 25°C. Inorg. Chem. 22, 2093 (1983).CrossrefGoogle Scholar

  • 26.

    Nagasaki, Y., Shimidzu, H., Tsuruta, T.: A novel synthesis of omega-(4-vinylphenyl)alkanols. Makromol. Chem.-Rapid 9, 381 (1988).CrossrefGoogle Scholar

  • 27.

    Itagaki, H., Nakayama, S., Tanaka, S., Yamawaki, M.: Effect of ionic-strength on the solubility of neptunium(V) hydroxide. Radiochim. Acta 58-9, 61 (1992).Google Scholar

  • 28.

    Neck, V., Kim, J. L., Kanellakopulos, B.: Solubility and hydrolysis behavior of neptunium(V). Radiochim. Acta 56, 25 (1992).Google Scholar

  • 29.

    Runde, W., Neu, M. P., Clark, D. L.: Neptunium(V) hydrolysis and carbonate complexation: experimental and predicted neptunyl solubility in concentrated NaCl using the Pitzer approach. Geochim. Cosmochim. Acta 60, 2065 (1996).CrossrefGoogle Scholar

  • 30.

    Rao, L. F., Srinivasan, T. G., Garnov, A. Y., Zanonato, P. L., Di Bernardo, P., Bismondo, A.: Hydrolysis of neptunium(V) at variable temperatures (10–85 degrees C). Geochim. Cosmochim. Acta 68, 4821 (2004).CrossrefGoogle Scholar

  • 31.

    Neck, V.: Comment on “Hydrolysis of neptunium(V) at variable temperatures (10–85 degrees C)” by L. Rao, T. G. Srinivasan, A. Yu. Garnov, P. Zanonato, P. Di Bernardo, and A. Bismondo. Geochim. Cosmochim. Acta 70, 4551 (2006).CrossrefGoogle Scholar

  • 32.

    Rao, L. F., Srinivasan, T. G., Garnov, A. Y., Zanonato, P., Di Bernardo, P., Bismondo, A.: Response to the comment by V. Neck on “Hydrolysis of neptunium(V) at variable temperatures (10–85 degrees C)”, Geochimica et Cosmochimica Acta 68, 4821–4830. Geochim. Cosmochim. Acta 70, 4556 (2006).CrossrefGoogle Scholar

  • 33.

    Tananaev, I. G.: New Np(V) hydroxide compounds. Radiokhimiya 33, 72 (1991).Google Scholar

  • 34.

    Tananaev, I. G.: Preparation and characterization of neptunium(V) and americium(V) hydroxide compounds. Radiokhimiya 33, 24 (1991).Google Scholar

  • 35.

    Tananaev, I. G.: Solid state reactions of certain neptunium(V) compounds with bases. Radiokhimiya 33, 19 (1991).Google Scholar

  • 36.

    Tananaev, I. G.: Solid state transformations of neptunium(V) compounds in basic and carbonate media. Radiokhimiya 33, 15 (1991).Google Scholar

  • 37.

    Almond, P. M., Skanthakumar, S., Soderholm, L., Burns, P. C.: Cation-cation interactions and antiferromagnetism in Na[Np(V)O2(OH)2]: synthesis, structure, and magnetic properties. Chem. Mater. 19, 280 (2007).CrossrefGoogle Scholar

  • 38.

    Fellhauer, D., Rothe, J., Altmaier, M., Neck, V., Runke, J., Wiss, T., Fanghänel, T.: Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part I: Experimental results. Radiochim. Acta 104, 355 (2016).Google Scholar

  • 39.

    Fellhauer, D., Altmaier, M., Gaona, X., Lützenkirchen, J., Fanghänel, T.: Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part II: Thermodynamics and implications for source term estimations of nuclear waste disposal. Radiochim. Acta 104, 381 (2016).Google Scholar

  • 40.

    Altmaier, M., Neck, V., Fanghänel, T.: Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes. Radiochim. Acta 96, 541 (2008).Google Scholar

  • 41.

    Neck, V., Altmaier, M., Rabung, T., Lützenkirchen, J., Fanghänel, T.: Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: solubility, hydrolysis, and ternary Ca-M(III)-OH complexes. Pure Appl. Chem. 81, 1555 (2009).CrossrefGoogle Scholar

  • 42.

    Fellhauer, D., Neck, V., Altmaier, M., Lützenkirchen, J., Fanghänel, T.: Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: a study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series. Radiochim. Acta 98, 541 (2010).Google Scholar

  • 43.

    Jackson, N., Short, J. F.: The separation of neptunium and plutonium by ion exchange; AERE-M-444. (1959), Atomic Energy Research Establishment, England, Berks, Harwell.Google Scholar

  • 44.

    Altmaier, M., Metz, V., Neck, V., Müller, R., Fanghänel, T.: Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl 4H2O(cr) in the system Mg-Na-H-OH-O-Cl-H2O at 25 degrees C. Geochim. Cosmochim. Acta 67, 3595 (2003).CrossrefGoogle Scholar

  • 45.

    Rothe, J., Butorin, S., Dardenne, K., Denecke, M. A., Kienzler, B., Löble, M., Metz, V., Seibert, A., Steppert, M., Vitova, T., Walther, C., Geckeis, H.: The INE-Beamline for actinide science at ANKA. Rev. Sci. Instrum. 83, 043105 (2012).CrossrefPubMedGoogle Scholar

  • 46.

    Denecke, M. A., Rothe, J., Dardenne, K., Blank, H., Hormes, J.: The INE-beamline for actinide research at ANKA. Phys. Scripta T115, 1001 (2005).Google Scholar

  • 47.

    Newville, M.: EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 8, 96 (2001).CrossrefPubMedGoogle Scholar

  • 48.

    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).CrossrefPubMedGoogle Scholar

  • 49.

    Kovba, L. M., Ippolitova, E. A., Simanov, Y. P.: An X-ray study on alkali metal uranates. Doklady Akademii. Nauk. 120, 1042 (1958).Google Scholar

  • 50.

    Lierse, C., Treiber, W., Kim, J. I.: Hydrolysis reactions of neptunium(V). Radiochim. Acta 38, 27 (1985).Google Scholar

  • 51.

    Novak, C. F., Roberts, K. E.: Thermodynamic modeling of neptunium(V) solubility in concentrated Na-CO3-HCO3-Cl-ClO4-H-OH-H2O systems. Mater. Res. Soc. Symp. Proc. 353, 1119 (1995).Google Scholar

  • 52.

    Roberts, K. E., Silber, H. B., Torretto, P. C., Prussin, T., Becraft, K., Hobart, D. E., Novak, C. F.: The experimental determination of the solubility product for NpO2OH in NaCl solutions. Radiochim. Acta 74, 27 (1996).Google Scholar

  • 53.

    Hagan, P. G., Clevelan, J. M.: Absorption spectra of neptunium ions in perchloric acid solution. J. Inorg. Nucl. Chem. 28, 2905 (1966).CrossrefGoogle Scholar

  • 54.

    Runde, W., Kim, J. I.: Untersuchung der Übertragbarkeit von Labordaten auf natürliche Verhältnisse. Chemisches Verhalten von drei und fünfwertigem Americium in salinen NaCl Lösungen; Report RCM 01094, TU München, München (1994).

  • 55.

    Neck, V., Fanghänel, T., Rudolph, G., Kim, J. I.: Thermodynamics of neptunium(V) in concentrated salt-solutions – chloride complexation and ion-interaction (Pitzer) parameters for the NpO2+ ion. Radiochim. Acta 69, 39 (1995).Google Scholar

  • 56.

    Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., Reich, T.: Investigation of aquo and chloro complexes of UO22+, NpO2+, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg. Chem. 36, 4676 (1997).CrossrefGoogle Scholar

  • 57.

    Nitsche, H., Standifer, E. M., Silva, R. J.: Neptunium(V) complexation with carbonate. Lanthanide Actinide Res. 3, 203 (1990).Google Scholar

  • 58.

    Riglet, C.: Chimie du Neptunium et autres Actinides en milieu carbonate; Rapport CEA-R-5535, CEA, (1990), Fontenay aux Roses.

  • 59.

    Neck, V., Runde, W., Kim, J. I., Kanellakopulos, B.: Solid-liquid equilibrium reactions of neptunium(V) in carbonate solution at different ionic strength. Radiochim. Acta 65, 29 (1994).Google Scholar

  • 60.

    Cohen, D., Walter, A. J.: Neptunium Pentoxide. J. Chem. Soc. 2696 (1964).CrossrefGoogle Scholar

  • 61.

    Volkov, Y. F., Visyachscheva, G. I., Kapshukov, I. I.: Studying carbonate compounds of pentavalent actinoids with alkali metal cations. Radiokhimiya 19, 319 (1977).Google Scholar

  • 62.

    Grenthe, I., Robouch, P., Vitorge, P.: Chemical-equilibria in actinide carbonate systems. J. Less.-Common Met. 122, 225 (1986).CrossrefGoogle Scholar

  • 63.

    Neck, V., Runde, W., Kim, J. I.: Solid-liquid equilibria of neptunium(V) in carbonate solutions of different ionic strengths. 2. Stability of the solid-phases. J. Alloy Compd. 225, 295 (1995).CrossrefGoogle Scholar

  • 64.

    Neck, V., Fanghänel, T., Kim, J. I.: Mixed hydroxo-carbonate complexes of neptunium(V). Radiochim. Acta 77, 167 (1997).Google Scholar

  • 65.

    Volkov, Y. F., Visyashcheva, G. I., Tomilin, S. V., Spiryakov, V. I., Kapshukov, I. I., Rykov, A. G.: Investigation of carbonate compounds of pentavalent actinides with alkali metal cations. Radiokhimiya 21, 673 (1979).Google Scholar

  • 66.

    Volkov, Y. F., Visyachscheva, G. I., Tomilin, S. V., Kapshukov, I. I., Rykov, A. G.: X-ray diffraction analysis of composition and crystal structure of some pentavalent actinide carbonates. (1979), NIIAR, USSR, Dimitrovgrad.

  • 67.

    Gaona, X., Tits, J., Dardenne, K., Liu, X., Rothe, J., Denecke, M. A., Wieland, E., Altmaier, M.: Spectroscopic investigations of Np(V/VI) redox speciation in hyperalkaline TMA-(OH,Cl) solutions. Radiochim. Acta 100, 759 (2012).CrossrefGoogle Scholar

  • 68.

    Choppin, G. R.: Utility of oxidation state analogs in the study of plutonium behavior. Radiochim. Acta 85, 89 (1999).Google Scholar

  • 69.

    Choppin, G. R., Rizkalla, E. N.; Solution chemistry of actinides and lanthanides. In: K. A. Gschneidner Jr., L. Eyring, (eds.), Handbook on the Physics and Chemistry of Rare Earths (1994), North Holland, Amsterdam.Google Scholar

  • 70.

    Tananaev, I. G.: Forms of Np(V) and Am(V) in basic aqueous media. Radiokhimiya 32, 53 (1990).Google Scholar

  • 71.

    Tananaev, I. G.: Speciation of Np(V) in solutions of tetramethylammonium hydroxides. Radiokhimiya 36, 15 (1994).Google Scholar

  • 72.

    Gaona, X., Fellhauer, D., Altmaier, M.: Thermodynamic description of Np(VI) solubility, hydrolysis, and redox behavior in dilute to concentrated alkaline NaCl solutions. Pure Appl. Chem. 85, 2027 (2013).CrossrefGoogle Scholar

  • 73.

    Felmy, A. R., Rai, D., Mason, M. J.: The solubility of hydrous thorium(Iv) oxide in chloride media – development of an aqueous ion-interaction model. Radiochim. Acta 55, 177 (1991).Google Scholar

About the article

Received: 2016-04-08

Accepted: 2016-07-18

Published Online: 2016-08-30

Published in Print: 2017-01-01


Citation Information: Radiochimica Acta, Volume 105, Issue 1, Pages 1–20, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2614.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jesus S. Martinez, Eugenio-Felipe Santillan, Manuel Bossant, Davide Costa, and Maria-Eleni Ragoussi
Applied Geochemistry, 2019, Volume 107, Page 159
[2]
S. Nagasaki, T. Saito, S. Tsushima, J. Goguen, and T. Yang
Nuclear Engineering and Technology, 2017
[3]
Panagiotis Misaelides, David Fellhauer, Xavier Gaona, Marcus Altmaier, and Horst Geckeis
Journal of Radioanalytical and Nuclear Chemistry, 2017, Volume 311, Number 3, Page 1665

Comments (0)

Please log in or register to comment.
Log in