Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 105, Issue 11

Issues

New insights into phosphate based materials for the immobilisation of actinides

Stefan Neumeier
  • Corresponding author
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yulia Arinicheva
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Forschungszentrum Jülich, Institute of Energy and Climate Research – Materials Synthesis and Processing (IEK-1), 52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yaqi Ji
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia M. Heuser
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Karlsruhe Institute of Technology, Institute for Applied Materials (IAM), 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr M. Kowalski
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philip Kegler
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hartmut Schlenz
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Bosbach
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guido Deissmann
  • Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich, Germany; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-12 | DOI: https://doi.org/10.1515/ract-2017-2819

Abstract

This paper focuses on major phosphate-based ceramic materials relevant for the immobilisation of Pu, minor actinides, fission and activation products. Key points addressed include the recent progress regarding synthesis methods, the formation of solid solutions by structural incorporation of actinides or their non-radioactive surrogates and waste form fabrication by advanced sintering techniques. Particular attention is paid to the properties that govern the long-term stability of the waste forms under conditions relevant to geological disposal. The paper highlights the benefits gained from synergies of state-of-the-art experimental approaches and advanced atomistic modeling tools for addressing properties and stability of f-element-bearing phosphate materials. In conclusion, this article provides a perspective on the recent advancements in the understanding of phosphate based ceramics and their properties with respect to their application as nuclear waste forms.

Keywords: Phosphate ceramics; nuclear waste forms; actinides immobilization

References

  • 1.

    International Atomic Energy Agency (IAEA): Scientific and technical basis for the geological disposal of radioactive wastes. Technical Reports Series 413, Vienna, 80 pp. (2004).Google Scholar

  • 2.

    Council of the European Union: COUNCIL DIRECTIVE 2011/70/EURATOM of 19 July 2011 establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste. Brussels, 56 pp. (2011).Google Scholar

  • 3.

    Ahn, J., Apted, M. J.: Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Woodhead Publishing, Oxford, 792 pp. (2011).Google Scholar

  • 4.

    USDOE. The Evaluation and Selection of Candidate High-Level Waste Forms, US Department of Energy Report DOE/TIC 11611, Savannah River Operations Office, Aiken, SC (1982).Google Scholar

  • 5.

    Hench, L. L., Clark, D. E., Campbell, J.: High level waste immobilization forms. Nucl. Chem. Waste Manage. 5, 149 (1984).CrossrefGoogle Scholar

  • 6.

    Lutze, W., Ewing, R. C. (Eds.): Radioactive Waste Forms for the Future, North Holland, Amsterdam, Netherlands (1988).Google Scholar

  • 7.

    Donald, I. W., Metcalfe, B. L., Taylor, R. N. J.: Review: the immobilisation of high level radioactive wastes using glasses and ceramics. J. Mater. Sci. 32, 5851 (1997).CrossrefGoogle Scholar

  • 8.

    Donald, I. W.: Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic and Hazardous Wastes, John Wiley & Sons Ltd, Chichester, West Sussex, UK (2016).Google Scholar

  • 9.

    Lumpkin, G. R.: Ceramic waste forms for actinides. Elements 2, 365 (2006).CrossrefGoogle Scholar

  • 10.

    Ewing, R. C.: Ceramic matrices for plutonium disposition. Prog. Nucl. Energy 49, 635 (2007).CrossrefGoogle Scholar

  • 11.

    Weber, W. J., Navrotsky, A., Stefanovsky, S., Vance, E., Vernaz, E.: Materials science of high-level nuclear waste immobilization. MRS Bull. 34, 46 (2009).CrossrefGoogle Scholar

  • 12.

    Vance, E. R., Perera, D. S., Moricca, S., Aly, Z., Begg, B. D.: Immobilisation of 129I by encapsulation in tin by hot-pressing at 200 °C. J. Nucl. Mater. 341, 93 (2005).CrossrefGoogle Scholar

  • 13.

    Carter, M. L., Gillen, A. L., Olufson, K., Vance, E. R.: HIPed tailored hollandite waste forms for the immobilization of radioactive Cs and Sr. J. Am. Ceram. Soc. 92, 1112 (2009).CrossrefGoogle Scholar

  • 14.

    Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A.: Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278, 219 (1979).CrossrefGoogle Scholar

  • 15.

    Ewing, R. C., Weber, W. J., Lian, J.: Nuclear waste disposal – pyrochlore (A2B2O7): nuclear wasteform for the immobilization of plutonium and “minor” actinides. Appl. Phys. Rev. 95, 5949 (2004).CrossrefGoogle Scholar

  • 16.

    Oelkers, E. H., Montel, J.-M.: Phosphates and nuclear waste storage. Elements 4, 113 (2008).CrossrefGoogle Scholar

  • 17.

    Dacheux, N., Clavier, N., Podor, R.: Versatile monazite: resolving geological records and solving challenges in materials science: monazite as a promising long-term radioactive waste matrix: benefits of high-structural flexibility and chemical durability. Am. Mineral. 98, 833 (2013).CrossrefGoogle Scholar

  • 18.

    Schlenz, H., Heuser, J., Neumann, A., Schmitz, S., Bosbach, D.: Monazite as a suitable actinide waste form. Z. Krist. 228, 113 (2013).Google Scholar

  • 19.

    Burakov, B. E., Yagovkina, M. A., Zamoryanskaya, M. V., Petrova, M. A., Domracheva, Y. V., Kolesnikova, E. V., Nikolaeva, L. D., Garbuzov, V. M., Kitsay, A. A., Zirlin, V. A.: Behavior of actinide host-phases under self-irradiation: zircon, pyrochlore, monazite, and cubic zirconia doped with Pu-238. In: S. V. Krivovichev (Ed.), Minerals as Advanced Materials, Springer, Berlin, Heidelberg (2008), p. 209.Google Scholar

  • 20.

    Deissmann, G., Neumeier, S., Modolo, G., Bosbach, D.: Durability of potential plutonium wasteforms under repository conditions. Mineral. Mag. 76, 2911 (2012).CrossrefGoogle Scholar

  • 21.

    Carter, M. L., Stewart, M. W. A., Vance, E. R., Begg, B. D., Moricca, S., Tripp, J.: HIPed tailored ceramic waste forms for the immobilization of Cs, Sr, and Tc. In: Proceedings GLOBAL 2007, Boise, ID, USA (2007), p. 1022.Google Scholar

  • 22.

    Angeli, F., McGlinn, P., Frugier, P.: Chemical durability of hollandite ceramic for conditioning cesium. J. Nucl. Mater. 380, 59 (2008).CrossrefGoogle Scholar

  • 23.

    Hartmann, T., Alaniz, A. J., Antonio, D. J.: Fabrication and properties of technetium-bearing pyrochlores and perovskites as potential waste forms. Procedia Chem. 7, 622 (2012).CrossrefGoogle Scholar

  • 24.

    Nenoff, T. M., Krumhansl, J. L., Gao, H. H., Rajan, A., McMahon, K.: Iodine waste form summary report. Sandia National Laboratories Report SAND2007-6202, Albuquerque, New Mexico and Livermore, California (2007).Google Scholar

  • 25.

    Gras, J. M., Do Quang, R., Masson, H., Lieven, T., Ferry, C., Poinssot, C., Debes, M., Delbecq, J. M.: Perspectives on the closed fuel cycle – implications for high-level waste matrices. J. Nucl. Mater. 362, 383 (2007).CrossrefGoogle Scholar

  • 26.

    Clavier, N., Podor, R., Dacheux, N.: Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 31, 941 (2011).CrossrefGoogle Scholar

  • 27.

    Poitrasson, F., Oelkers, E., Schott, J., Montel, J.-M.: Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: implications for rare earth element mobility in crustal fluids. Geochim. Cosmochim. Acta 68, 2207 (2004).CrossrefGoogle Scholar

  • 28.

    Oelkers, E. H., Poitrasson, F.: An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. Chem. Geol. 191, 73 (2002).CrossrefGoogle Scholar

  • 29.

    Ewing, R. C., Wang, L. M.: Phosphates as nuclear waste forms. Rev. Mineral. Geochem. 48, 673 (2002).CrossrefGoogle Scholar

  • 30.

    Meldrum, A., Boatner, L. A., Weber, W. J., Ewing, R. C.: Radiation damage in zircon and monazite. Geochim. Cosmochim. Acta 62, 2509 (1998).CrossrefGoogle Scholar

  • 31.

    Meldrum, A., Boatner, L. A., Ewing, R. C.: A comparison of radiation effects in crystalline ABO4-type phosphates and silicates. Mineral. Mag. 64, 185 (2000).CrossrefGoogle Scholar

  • 32.

    Ewing, R. C., Meldrum, A., Wang, L. M., Wang, S.: Radiation induced amorphization. Rev. Mineral. Geochem. 39, 319 (2000).CrossrefGoogle Scholar

  • 33.

    Anthony, J. W., Bideaux, R. A., Bladh, K. W., Nichols, M. C. (Eds.): Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA, USA (2000). http://www.handbookofmineralogy.org/.

  • 34.

    Mesbah, A., Clavier, N., Elkaim, E., Gausse, C., Kacem, I. B., Szenknect, S., Dacheux, N.: Monoclinic form of the rhabdophane compounds: REEPO4·0.667H2O. Cryst. Growth Des. 1, 5090 (2014).Google Scholar

  • 35.

    Ni, Y. X., Hughes, J. M., Mariano, A. N.: Crystal chemistry of the monazite and xenotime structure. Am. Mineral. 80, 21 (1995).CrossrefGoogle Scholar

  • 36.

    Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).Google Scholar

  • 37.

    Boatner, L. A.: Synthesis, structure and properties of monazite, pretulite and xenotime. Rev. Mineral. Geochem. 48, 87 (2002).CrossrefGoogle Scholar

  • 38.

    Cuney, M., Mathieu, R.: Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon. Geology 28, 743 (2000).CrossrefGoogle Scholar

  • 39.

    Seydoux-Guillaume, A. M., Wirth, R., Nasdala, L., Gottschalk, M., Montel, J. M., Heinrich, W.: An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys. Chem. Miner. 29, 240 (2002).CrossrefGoogle Scholar

  • 40.

    Seydoux-Guillaume, A. M., Wirth, R., Deutsch, A., Schärer, U.: Microstructure of 24 - 1928 Ma concordant monazites: implications for geochronology and nuclear waste deposits. Geochim. Cosmochim. Acta 68, 2517 (2004).CrossrefGoogle Scholar

  • 41.

    Lumpkin, G. R., Geisler-Wierwille, T.: Minerals and natural analogues. In: R. J. M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier Ltd., Amsterdam (2012), Vol. 5, p. 563.Google Scholar

  • 42.

    Seydoux-Guillaume, A. M., Wirth, R., Ingrin, J.: Contrasting response of ThSiO4 and monazite to natural irradiation. Eur. J. Mineral. 19, 7 (2007).CrossrefGoogle Scholar

  • 43.

    Seydoux-Guillaume, A. M., Montel, J. M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J. L., Janots, E., Wirth, R.: Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem. Geol. 330–331, 140 (2012).Google Scholar

  • 44.

    Montel, J. M., Razafimahatratra, D., Ralison, B., De Parseval, P., Thibault, M., Randranja, R.: Monazite from mountain to ocean: a case study from Trolognaro (Fort-Dauphin). Madag. Eur. J. Mineral. 23, 745 (2011).CrossrefGoogle Scholar

  • 45.

    Bregiroux, D., Lucas, S., Champion, E., Audubert, F., Bernache-Assollant, D.: Sintering and microstructure of rare earth phosphate ceramics REPO4 with RE=La, Ce or Y. J. Eur. Ceram. Soc. 26, 279 (2006).CrossrefGoogle Scholar

  • 46.

    Bregiroux, D., Audubert, F., Charpentier, T., Sakellariou, D., Bernache-Assollant, D.: Solid-state synthesis of monazite-type compounds LnPO4 (Ln=La to Gd). Solid State Sci. 9, 432 (2007).CrossrefGoogle Scholar

  • 47.

    Popa, K., Konings, R. J. M.: High-temperature heat capacities of EuPO4 and SmPO4 synthetic monazites. Thermochim. Acta 445, 49 (2006).CrossrefGoogle Scholar

  • 48.

    Aloy, A. S., Kovarskaya, E. N., Koltsova, T. I., Samoylov, S. E., Rovnyi, S. I., Medvedev, G. M. Immobilisation of Am-241 formed under plutonium metal conversion into monazite-type ceramic. In: L. J. Lardine, G. B. Borisov (Eds.), Review of Excess Weapons Plutonium Disposition. LLNL Contract work in Russia, UCRL-ID-149341 (2002), pp. 141–5.Google Scholar

  • 49.

    Ushakov, S., Helean, K., Navrotsky, A., Boatner, L.: Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16, 2623 (2001).CrossrefGoogle Scholar

  • 50.

    Huittinen, N., Arinicheva, Y., Schmitz, M., Neumeier, S., Stumpf, T.: Using Eu3+ as an atomic probe to investigate the local environment in LaPO4–GdPO4 monazite end-members. J. Colloid Interface Sci. 483, 139 (2016).CrossrefGoogle Scholar

  • 51.

    Terra, O., Clavier, N., Dacheux, N., Podor, R.: Preparation and characterization of lanthanum – gadolinium monazites as ceramics for radioactive waste storage. New J. Chem. 27, 957 (2003).CrossrefGoogle Scholar

  • 52.

    Popa, K., Konings, R. J. M., Geisler, T.: High-temperature calorimetry of (La1−xLnx)PO4 solid solutions. J. Chem. Thermodyn. 39, 236 (2007).CrossrefGoogle Scholar

  • 53.

    Brandt, F., Neumeier, S., Schuppik, T., Arinicheva, Y., Bukaemskiy, A., Modolo, G., Bosbach, D.: Conditioning of minor actinides in lanthanum monazite ceramics: a surrogate study with Europium. Prog. Nucl. Energy 72, 140 (2014).CrossrefGoogle Scholar

  • 54.

    Neumeier, S., Kegler, P., Arinicheva, Y., Shelyug, A., Kowalski, P. M., Schreinemachers, C., Navrotsky, A., Bosbach, D.: Thermochemistry of La1-xLnxPO4-monazites (Ln=Gd, Eu). J. Chem. Thermodyn. 105, 396 (2017).Google Scholar

  • 55.

    Arinicheva, Y., Bukaemskiy, A., Neumeier, S., Modolo, G., Bosbach, D.: Studies on thermal and mechanical properties of monazite-type ceramics for the conditioning of minor actinides. Prog. Nucl. Energy 72, 144 (2014).CrossrefGoogle Scholar

  • 56.

    Zeng, P., Teng, Y., Huang, Y., Wu, L., Wang, X.: Synthesis, phase structure and microstructure of monazite-type Ce1-xPrxPO4 solid solutions for immobilization of minor actinide neptunium. J. Nucl. Mater. 452, 407 (2014).CrossrefGoogle Scholar

  • 57.

    Bjorklund, C.W.: The preparation of PuP2O7 and PuPO4. J. Am. Chem. Soc. 79, 6347 (1958).Google Scholar

  • 58.

    Burakov, B. E., Yagovkina, M. A., Garbuzov, V. M., Kitsay, A. A., Zirlin, V. A.: Self-irradiation of monazite ceramics: contrasting behavior of PuPO4 and (La,Pu)PO4 doped with Pu-238. Mater. Res. Soc. Symp. Proc. 824, 219 (2004).Google Scholar

  • 59.

    Rai, D., Felmy, A. R., Mason, M. J.: Solubility and ion activity product of AmPO4∙xH2O. Radiochim. Acta 56, 7 (1992).Google Scholar

  • 60.

    Aloy, A. S., Kovarskaya, E. N., Koltsova, T. I., Samoylov, S. E., Rovnyi, S. I., Medvedev, G. M., Jardine, L. J.: Immobilization of Am-241, formed under plutonium metal conversion, into monazite-type ceramics. Am. Soc. Mech. Eng. 3, 1833 (2002).Google Scholar

  • 61.

    Bregiroux, D., Belin, R., Valenza, P., Audubert, F., Bernache-Assollant, D.: Plutonium and americium monazite materials: solid state synthesis and X-ray diffraction study. J. Nucl. Mater. 366, 52 (2007).CrossrefGoogle Scholar

  • 62.

    Weigel, F., Haug, H.: Zur Kenntnis des Curium(III)phosphats. Radiochim. Acta 4, 227 (1965).Google Scholar

  • 63.

    Keller, C., Walter, K. H.: Darstellung, Gitterkonstanten und chemische Eigenschaften einiger ternärer Oxide des Plutoniums, Americiums und Curiums vom Typ MeIIIXVO4. J. Inorg. Nucl. Chem. 27, 1253 (1965).CrossrefGoogle Scholar

  • 64.

    Holliday, K. S., Babelot, C., Walther, C., Neumeier, S., Bosbach, D., Stumpf, T.: Site-selective time resolved laser fluorescence spectroscopy of Eu and Cm doped LaPO4. Radiochim. Acta 100, 189 (2012).CrossrefGoogle Scholar

  • 65.

    Hobart, D. E., Begun, G. M., Haire, R. G., Hellwegel, H. E.: Raman spectra of the transplutonium orthophosphates and trimetaphosphates. J. Raman Spectrosc. 14, 59 (1983).CrossrefGoogle Scholar

  • 66.

    Bamberger, C. E., Haire, R. G., Hellwege, H. E., Begun, G. M.: Synthesis and characterization of crystalline phosphates of plutonium(III) and plutonium(IV). J. Less-Common Met. 97, 349 (1984).CrossrefGoogle Scholar

  • 67.

    Glorieux, B., Jorion, F., Montel, J. M., Matecki, M., Deschanels, X., Coutures, J. P.: Investigation of plutonium-239 conditioning in monazite and brabantite matrices: synthesis and characterization. In: Proceedings ATALANTE 2004, Nîmes, France (2004), O32-04, pp. 1–6.Google Scholar

  • 68.

    Popa, K., Raison, P. E., Martel, L., Martin, P. M., Prieur, D., Solari, P. L., Bouëxière, D., Konings, R. J. M., Somers, J.: Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy. J. Solid State Chem. 230, 169 (2015).CrossrefGoogle Scholar

  • 69.

    Jardin, R., Pavel, C. C., Raison, P. E., Bouëxière, D., Santa-Cruz, H., Konings, R. J. M., Popa, K.: The high-temperature behaviour of PuPO4 monazite and some other related compounds. J. Nucl. Mater. 378, 167 (2008).CrossrefGoogle Scholar

  • 70.

    Begg, B. D., Vance, E. R., Conradson, S. D.: The incorporation of plutonium and neptunium in zirconolite and perovskite. J. Alloys Compd. 271–273, 221 (1998).Google Scholar

  • 71.

    Popa, K., Colineau, E., Wastin, F., Konings, R. J. M.: The low-temperature heat capacity of (Pu0.1La0.9)PO4. Solid State Commun. 144, 74 (2007).CrossrefGoogle Scholar

  • 72.

    Arinicheva, Y., Popa, K., Scheinost, A. C., Rossberg, A., Dieste-Blanco, O., Raison, P., Cambriani, A., Somers, J., Neumeier, S., Bosbach, D.: Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study. J. Nucl. Mater. 493, 404 (2017).CrossrefGoogle Scholar

  • 73.

    Zhang, Y., Vance, E. R.: Plutonium in monazite and brabantite: diffuse reflectance spectroscopy study. J. Nucl. Mater. 375, 311 (2008).CrossrefGoogle Scholar

  • 74.

    Clavier, N., Dacheux, N., Wallez, G., Quarton, G.: Hydrothermal methods as a new way of actinide phosphate preparation. Mater. Res. Soc. Symp. Proc. 985, 169 (2007).Google Scholar

  • 75.

    Mesbah, A., Clavier, N., Elkaim, E., Szenknect, S., Dacheux, N.: In pursuit of the rhabdophane crystal structure: form the hydrated monoclinic LnPO4.0.667H2O to the hexagonal LnPO4 (Ln=Nd, Sm, Gd, Eu and Dy). J. Solid State Chem. 249, 221 (2017).CrossrefGoogle Scholar

  • 76.

    Mooney, R. C. L.: X-ray diffraction study of cerous phosphate and related crystals. Acta. Cryst. 3, 337 (1950).CrossrefGoogle Scholar

  • 77.

    Lucas, S., Champion, E., Bernache-Assollant, D., Leroy, G.: Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y) – Part II. Thermal behavior. J. Solid State Chem. 177, 1312 (2004).CrossrefGoogle Scholar

  • 78.

    du Fou de Kerdaniel, E., Clavier, N., Dacheux, N., Terra, O., Podor, R.: Actinide solubility-controlling phases during the dissolution of phosphate ceramics. J. Nucl. Mater. 362, 451 (2007).CrossrefGoogle Scholar

  • 79.

    Gausse, C., Szenknect, S., Qin, D. W., Mesbah, A., Clavier, N., Neumeier, S., Bosbach, D., Dacheux, N.: Determination of the solubility of rhabdophanes LnPO4·0.667H2O (Ln=La to Dy). Eur. J. Inorg. Chem. 28, 4615 (2016).Google Scholar

  • 80.

    Assaaoudi, H., Ennaciri, A., Rulmont A.: Vibrational spectra of hydrated rare earth orthophosphates. Vib. Spectrosc. 25, 81 (2001).CrossrefGoogle Scholar

  • 81.

    Jonasson, R. C.: DTA study of the rhabdophane to monazite transformation in rare earth (La-Dy) phosphates. Thermochim. Acta 108, 65 (1986).CrossrefGoogle Scholar

  • 82.

    Neumeier, S., Arinicheva, Y., Clavier, N., Podor, R., Bukaemskiy, A., Modolo, G., Dacheux, N., Bosbach D.: The effect of the synthesis route of monazite precursors on the microstructure of sintered pellets. Prog. Nucl. Energy 92, 298–305 (2016).CrossrefGoogle Scholar

  • 83.

    Peiffert, C., Brouand, M., Cuney, M., Podor, R.: La monazite—de l’indicateur de fertilité des granites pour les granites. Rapport CEA-R-5748, 103–8 (1996).Google Scholar

  • 84.

    Podor R.: Synthèse et caractérisation des monazites uranifères et thorifères. PhD thesis of Université Henri Poincaré Nancy, France, No: 94 NAN10404 (1994).Google Scholar

  • 85.

    Bregiroux, D., Popa, K., Wallez, G.: Crystal chemistry of MIIM′IV(PO4)2 double monophosphates. J. Solid State Chem. 230, 26 (2015).CrossrefGoogle Scholar

  • 86.

    Gramaccioli, C., Segalstad, T.: A uranium- and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy. Am. Mineral. 63, 757 (1978).Google Scholar

  • 87.

    Popa, K., Bregiroux, D., Konings, R. J. M., Goudera, T., Popa, A. F., Geisler, T., Raison, P. E.: The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry. J. Solid State Chem. 180, 2346 (2007).CrossrefGoogle Scholar

  • 88.

    Wallez, G., Bregiroux, D., Popa, K., Raison, P. E., Apostolidis, C., Lindqvist-Reis, P., Konings, R. J. M., Popa, A. F.: BaAnIV(PO4)2 (AnIV=Th, Np) – a new family of layered double phosphates. Eur. J. Inorg. Chem. 1/2011, 110 (2011).Google Scholar

  • 89.

    Graeber, E. J., Rosenzweig, A.: The crystal structures of yavapaiite, KFe(SO4)2, and goldichite KFe(SO4)2(H2O)4. Am. Mineral. 56, 1917 (1971).Google Scholar

  • 90.

    Linthout, K.: Tripartite division of the system 2REEPO4 – CaTh(PO4)2 – 2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Can. Mineral. 45, 503 (2007).CrossrefGoogle Scholar

  • 91.

    Beall, G., Boatner, L., Mullica, D., Milligan, W.: The structure of cerium orthophosphate, a synthetic analogue of monazite. J. Inorg. Nucl. Chem. 43, 101 (1981).CrossrefGoogle Scholar

  • 92.

    Popa, K., Wallez, G., Raison, P. E., Bregiroux, D., Apostolidis, C., Lindqvist-Reis, P., Konings, R. J. M.: SrNp(PO4)2: an original ordered modification of cheralite. Inorg. Chem. 49, 6904 (2010).CrossrefPubMedGoogle Scholar

  • 93.

    Podor, R., Cuney, M.: Experimental study of Th-bearing LaPO4 (780 °C, 200 MPa): implications for monazite and actinide orthophosphate stability. Am. Mineral. 82, 765 (1997).CrossrefGoogle Scholar

  • 94.

    Dusausoy, Y., Ghermani, N.-E., Podor, R., Cuney, M.: Low-temperature ordered phase of CaU(PO4)2: synthesis and crystal structure. Eur. J. Mineral. 8, 667–673 (1996).CrossrefGoogle Scholar

  • 95.

    Podor, R., Cuney, M., Trung, C. N.: Experimental study of the solid solution between monazite-(La) and (Ca0.5U0.5)PO4 at 780 °C and 200 MPa. Am. Mineral. 80, 1261 (1995).CrossrefGoogle Scholar

  • 96.

    Terra, O., Dacheux, N., Clavier, N., Podor, R., Audubert, F.: Preparation of optimized uranium and thorium bearing brabantite or monazite/brabantite solid solutions. J. Am. Ceram. Soc. 91, 3673 (2008).CrossrefGoogle Scholar

  • 97.

    Tabuteau, A., Pagès, M., Livet, J., Musikas, C.: Monazite-like phases containing transuranium elements (neptunium and plutonium). J. Mater. Sci. Lett. 7, 1315 (1988).CrossrefGoogle Scholar

  • 98.

    Raison, P. E., Jardin, R., Bouëxière, D., Konings, R. J. M., Geisler, T., Pavel, C. C., Rebizant, J., Popa, K.: Structural investigation of the synthetic CaAn(PO4)2 (An=Th and Np) cheralite-like phosphates. Phys. Chem. Miner. 35, 603 (2008).CrossrefGoogle Scholar

  • 99.

    Bregiroux, D., Terra, O., Audubert, F., Dacheux, N., Serin, V., Podor, R., Bernache-Assollant, D.: Solid-state synthesis of monazite-type compounds containing tetravalent elements. Inorg. Chem. 46, 10372 (2007).CrossrefPubMedGoogle Scholar

  • 100.

    Poitrasson, F., Chenery, S., Bland, D. J.: Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sci. Lett. 145, 79 (1996).CrossrefGoogle Scholar

  • 101.

    Terra, O.: Incorporation d’actinides tétravalents dans trois matrices phosphatées: britholite, monazite/brabantite et Phosphate-Diphosphate de Thorium (Bêta-PDT). PhD-thesis, Université Paris Sud-Paris XI, Paris (2005).Google Scholar

  • 102.

    Deschanels, X., Picot, V., Glorieux, B., Jorion, F., Peuget, S., Roudil, D., Jégou, C., Broudic, V., Cachia, J. N., Advocat, T., Den Auwer, C., Fillet, C., Coutures, J. P., Hennig, C., Scheinost, A.: Plutonium incorporation in phosphate and titanate ceramics for minor actinide containment. J. Nucl. Mater. 352, 233 (2006).CrossrefGoogle Scholar

  • 103.

    Brandel, V., Dacheux, N.: Chemistry of tetravalent actinide phosphates—part II. J. Solid State Chem. 177, 4755 (2004).CrossrefGoogle Scholar

  • 104.

    Qin, D., Mesbah, A., Gausse, C., Szenknect, S., Dacheux, N., Clavier, N.: Incorporation of thorium in the rhabdophane structure: synthesis and characterization of CaxThxPr1-2xPO4·nH2O solid solutions. J. Nucl. Mater. 492, 88 (2017).CrossrefGoogle Scholar

  • 105.

    Bénard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M., Louër, D., Quarton, M.: Th2(PO4)4P2O7, a new thorium phosphate: synthesis, characterization, and structure determination. Chem. Mater. 8, 181 (1996).CrossrefGoogle Scholar

  • 106.

    Dacheux, N., Podor, R., Chassigneux, B., Brandel, V., Genet, M.: Actinides immobilization in new matrices based on solid solution: Th4-xMIVx(PO4)4P2O7. (MIV=238U, 239Pu). J. Alloys Compd. 271–273, 236 (1998).Google Scholar

  • 107.

    Dacheux, N., Podor, R., Brandel, V., Genet, M.: Investigations of systems ThO2-MO2-P2O5 (M=U, Ce, Zr, Pu). Solid solutions of thorium-uranium (IV) and thorium-plutonium (IV) phosphate-diphosphates. J. Nucl. Mater. 252, 179 (1998).CrossrefGoogle Scholar

  • 108.

    Dacheux, N., Thomas, A. C., Brandel, V., Genet, M.: Investigations of systems ThO2-NpO2-P2O5. Solid solutions of thorium-neptunium (IV) and thorium-plutonium (IV) phosphate-diphosphates. J. Nucl. Mater. 257, 108 (1998).CrossrefGoogle Scholar

  • 109.

    Brandel, V., Dacheux, N., Genet, M., Podor, R.: Hydrothermal synthesis and characterization of the thorium phosphate hydrogenphosphate, thorium hydroxide phosphate, and dithorium oxide phosphate. J. Solid State Chem. 159, 139 (2001).CrossrefGoogle Scholar

  • 110.

    Qin, D., Gausse, C., Szenknect, S., Mesbah, A., Clavier, N., Dacheux, N.: Solubility product of the thorium phosphate hydrogen-phosphate hydrate (Th2(PO4)2(HPO4)·H2O, TPHPH). J. Chem. Thermodyn. 114, 151 (2017).CrossrefGoogle Scholar

  • 111.

    Clavier, N., Dacheux, N., Podor, R.: Synthesis, characterization, sintering, and leaching of β-TUPD/monazite radwaste matrices. Inorg. Chem. 45, 220 (2006).PubMedCrossrefGoogle Scholar

  • 112.

    Dacheux, N., Grandjean, S., Rousselle, J., Clavier, N.: Hydrothermal method of preparation of actinide(IV) phosphate hydrogenphosphate hydrates and study of their conversion into actinide(IV) phosphate diphosphate solid solutions. Inorg. Chem. 46, 10390 (2007).CrossrefPubMedGoogle Scholar

  • 113.

    Boyer, L., Savariault, J.-M., Carpena, J., Lacout, J.-L.: A neodymium-substituted britholite compound. Acta Crystallogr. C 54, 1057 (1998).CrossrefGoogle Scholar

  • 114.

    Sere, V.: Géochimie des minéraux néoformés à Oklo (Gabon), histoire géologique du bassin d‘Oklo: une contribution pour les études de stockages géologiques de déchets radioactifs, Université de Paris VII, Paris (1996).Google Scholar

  • 115.

    Terra, O., Dacheux, N., Audubert, F., Podor, R.: Synthesis and characterization of thorium-bearing britholites. J. Nucl. Mater. 352, 224 (2006).Google Scholar

  • 116.

    Terra, O., Audubert, F., Dacheux, N., Guy, C., Podor, R.: Synthesis and characterization of uranium-bearing britholites. J. Nucl. Mater. 366, 70 (2007).CrossrefGoogle Scholar

  • 117.

    Bulanov, E. N., Wang, J., Knyazev, A. V., White, T., Manyakina, M. E., Baikie, T., Lapshin, A. N., Dong, Z.: Structure and thermal expansion of calcium-thorium apatite, [Ca4]F[Ca2Th4]T[(SiO4)6]O2. Inorg. Chem. 54, 11356 (2015).CrossrefGoogle Scholar

  • 118.

    Boyer, L., Piriou, B., Carpena, J., Lacout, J.: Study of sites occupation and chemical environment of Eu3+ in phosphate-silicates oxyapatites by luminescence. J. Alloys Compd. 311, 143 (2000).CrossrefGoogle Scholar

  • 119.

    Achille, V. L.: Etude par modélisation atomistique de l‘incorporation de lanthanides dans le réseau cristallin d‘une apatite phosphocalcique, Université Paris VI, Paris (1999).Google Scholar

  • 120.

    Meis, C.: Computational study of plutonium–neodymium fluorobritholite Ca9Nd0.5Pu0.5(SiO4)(PO4)5F2 thermodynamic properties and threshold displacement energies. J. Nucl. Mater. 289, 167 (2001).CrossrefGoogle Scholar

  • 121.

    Vance, E. R., Ball, C. J., Begg, B. D., Carter, M. L., Day, R. A., Thorogood, G. J.: Pu, U, and Hf incorporation in Gd silicate apatite. J. Am. Ceram. Soc. 86, 1223 (2003).CrossrefGoogle Scholar

  • 122.

    Brownfield, M. E., Foord, E. E., Sutley, S. J., Botinelly, T.: Kosnarite, KZr2(PO4)3, a new mineral from Mount Mica and Black Mountain, Oxford County, Maine. Am. Mineral. 78, 653 (1993).Google Scholar

  • 123.

    Orlova, A. I., Kitaev, D. B., Orlova, M. P., Bykov, D. M., Orlova, V. A., Tomilin, S. V., Lizin, A. A., Lukinich, A. N., Stefanovsky, S. V.: Synthesis and investigations of the phosphates of Th, U, Np, Pu, Am, and lanthanides with monazite, zircon, kosnarite and langbeinite mineral-like structures. In: R. Alvarez, N. D. Bryan, I. May (Eds.), Recent Advances in Actinide Science (Special Publication No. 305), RSC Publishing, Cambridge, UK (2006), p. 454.Google Scholar

  • 124.

    Kato, T.: The crystal structure of florencite. Neues Jahrb. Mineral. Monatsh. 5, 227 (1990).Google Scholar

  • 125.

    Montel, J.-M.: Minerals and design of new waste forms for conditioning nuclear waste. C. R. Geosci. 343, 230 (2011).CrossrefGoogle Scholar

  • 126.

    Byrappa, K.: Preparative methods and growth of rare earth phosphates. Prog. Cryst. Growth 13, 163 (1986).CrossrefGoogle Scholar

  • 127.

    Orlova, A. I., Kitaev, D. B., Kemenov, D. V., Orlova, M. P., Kazantsev, G. N., Samoilov, S. G., Kurazhkovskaya, V. S.: Synthesis and crystal-chemical properties of phosphates BIIRIIIMIV(PO4)3 containing f, d, and alkaline-earth elements. Radiochemistry 45, 103 (2003).CrossrefGoogle Scholar

  • 128.

    Boyer, L., Carpena, J., Lacout, J.: Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ion. 95, 121 (1997).CrossrefGoogle Scholar

  • 129.

    Boakye, E. E., Mogilevsky, P.: Synthesis of nanosized spherical rhabdophane particles. J. Am. Ceram. Soc. 88, 2740 (2005).Google Scholar

  • 130.

    Lucas, S., Champion, E., Bregiroux, D., Bernache-Assollant, D., Audubert, F.: Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y) – part I. Synthesis and characterization. J. Solid State Chem. 177, 1302 (2004).CrossrefGoogle Scholar

  • 131.

    Meyssamy, H., Riwotzki, K., Kornovski, A., Naused, S., Hause, M.: Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb. Adv. Mater. 11, 840 (1999).CrossrefGoogle Scholar

  • 132.

    Bingham, P. A., Hand, R. J., Stennett, M. C., Hyatt, N. C., Harrison, M. T.: The use of surrogates in waste immobilization studies: a case of plutonium. Mater. Res. Soc. Symp. Proc. 1107, 421 (2008).CrossrefGoogle Scholar

  • 133.

    Lide, D. R.: CRC Handbook of Chemistry and Physics, 72nd ed. CRC Press, Boca Raton (1991–1992), Section 8, p. 17–22.Google Scholar

  • 134.

    Vance, E. R., Dorji, T. C., Gregg, D. J.: Synroc development – past and present applications. MRS Energy Sustain. 4, https://doi.org/10.1557/mre.2017.9 (2017).

  • 135.

    Gombert, D., Richardson, J. R.: Cold crucible induction melter design and development. Nucl. Technol. 14, 301 (2003).Google Scholar

  • 136.

    Sobolev, I. A., Stefanovsky, S. V., Yudintsev, B. I., Nikonov, B. S., Mokhov, A. V.: Study of melted Synroc doped with simulated high-level waste. In: W. J. Gray, I. R. Triay (Eds.), Scientific Basis for Nuclear Waste Management XX, Materials Research Society, Warrendale, PA (1997), p. 363.Google Scholar

  • 137.

    Sobolev, I. A., Stefanovsky, S. V., Emelianenko, B. I., Yudintsev, S., Vance, E. R., Jostsons, A.: Comparative study of Synroc-C ceramics produced by hot-pressing and inductive melting. In: W. J. Gray, I. R. Triay (Eds.), Scientific Basis for Nuclear Waste Management XX. Materials Research Society, Warrendale, PA (1997), p. 371.Google Scholar

  • 138.

    Yudintsev, S. V., Stefanovsky, S. V., Kalenova, M. Y., Nikonov, B. S., Nikol’skii, M. S., Koshcheev, A. M., Shchepin, A. S.: Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting. Radiochemistry 57, 321 (2015).CrossrefGoogle Scholar

  • 139.

    Vance, E. R.: Ceramic waste forms. In: R. J. M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier Ltd., Amsterdam (2012), Vol. 5, p. 485.Google Scholar

  • 140.

    Li, H., Zhang, Y., McGlinn, P. J., Moricca, S., Begg, B. D., Vance, E. R.: Characterisation of stainless steel–synroc interactions under hot isostatic pressing (HIPing) conditions. J. Nucl. Mater. 355, 136 (2006).CrossrefGoogle Scholar

  • 141.

    Zhang, Y., Li, H., McGlinn, P. J., Yang, B., Begg, B. D.: Stainless steel/glass–ceramic interactions under hot isostatic pressing (HIPing) conditions. J. Nucl. Mater. 375, 315 (2008).CrossrefGoogle Scholar

  • 142.

    Zhang, Y., Li, H., Moricca, S. J.: Pyrochlore-structured titanate ceramics for immobilisation of actinides: hot isostatic pressing (HIPing) and stainless steel/waste form interactions. Nucl. Mater. 377, 470 (2008).CrossrefGoogle Scholar

  • 143.

    Ma, J., Teng, Y., Wu, L., Zhang, K., Huang, Y., Zhao, X., Wang, G.: Effect of sintering technique on mechanical property and chemical durability of Ce0.5Pr0.5PO4 ceramics. Ceram. Int. 41, 14597 (2015).CrossrefGoogle Scholar

  • 144.

    Bregiroux, D., Audubert, F., Bernache-Assollant, D.: Densification and grain growth during solid state sintering of LaPO4. Ceram. Int. 35, 1115 (2009).CrossrefGoogle Scholar

  • 145.

    McCarthy, G. J., White, W. B., Pfoertsch, D. E.: Synthesis of nuclear waste monazites: ideal actinide hosts for geologic disposal. Mater. Res. Bull. 13, 1239 (1978).CrossrefGoogle Scholar

  • 146.

    Babelot, C., Bukaemskiy, A., Neumeier, S., Modolo, G., Bosbach, D.: Crystallization processes, compressibility, sinterability and mechanical properties of La-monazite-type ceramics. J. Eur. Ceram. Soc. 37, 1681 (2017).CrossrefGoogle Scholar

  • 147.

    Morgan, P., Housley, R., Davis, J., DeHaan, M.: Chemical and Ceramic Methods Toward Safe Storage of Actinides, Rockwell Scientific, Thousand Oaks, CA (2005).Google Scholar

  • 148.

    Ma, J., Teng, Y., Huang, Y., Wu, L., Zhang, K., Zhao, X.: Effects of sintering process, pH and temperature on chemical durability of Ce0.5Pr0.5PO4 ceramics. J. Nucl. Mater. 465, 550 (2015).CrossrefGoogle Scholar

  • 149.

    Teng, Y., Wang, X., Huang, Y., Wu, L., Zeng, P.: Hot-pressure sintering, microstructure and chemical durability of Ce0.5Eu0.5PO4 monazite ceramics. Ceram. Int. 41, 10057 (2015).CrossrefGoogle Scholar

  • 150.

    Teng, Y., Zeng, P., Huang, Y., Wu, L., Wang, X.: Hot-pressing of monazite Ce0.5Pr0.5PO4 ceramic and its chemical durability. J. Nucl. Mater. 465, 482 (2015).CrossrefGoogle Scholar

  • 151.

    Zhao, X., Teng, Y., Wu, L., Huang, Y., Ma, J., Wang, G.: Chemical durability and leaching mechanism of Ce0.5Eu0.5PO4 ceramics: effects of temperature and pH values. J. Nucl. Mater. 466, 187 (2015).CrossrefGoogle Scholar

  • 152.

    Zhao, X., Teng, Y., Yang, H., Huang, Y., Ma, J.: Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering. Ceram. Int. 41, 11062 (2015).CrossrefGoogle Scholar

  • 153.

    Du, A., Qu, Z. X., Wan, C. L., Han, R. B., Pan, W.: In effects of processing parameters of SPS on the densification and texture of LaPO4 ceramics. Key Engineering Materials, Trans. Tech. Publ. 368–372, 1059 (2008).Google Scholar

  • 154.

    Du, A., Wan, C., Qu, Z., Pan, W.: Thermal conductivity of monazite-type REPO4 (RE= La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc. 92, 2687 (2009).CrossrefGoogle Scholar

  • 155.

    Du, A., Wan, C., Qu, Z., Wu, R., Pan, W.: Effects of texture on the thermal conductivity of the LaPO4 monazite. J. Am. Ceram. Soc. 93, 2822 (2010).CrossrefGoogle Scholar

  • 156.

    Popa, K., Cologna, M., Martel, L., Staicu, D., Cambriani, A., Ernstberger, M., Raison, P. E., Somers, J.: CaTh(PO4)2 cheralite as a candidate ceramic nuclear waste form: spark plasma sintering and physicochemical characterization. J. Eur. Ceram. Soc. 36, 4115 (2016).CrossrefGoogle Scholar

  • 157.

    Dacheux, N., Chassigneux, B., Brandel, V., Le Coustumer, P., Genet, M., Cizeron, G.: Reactive sintering of the thorium phosphate-diphosphate. Study of physical, thermal, and thermomechanical properties and chemical durability during leaching tests. Chem. Mater. 14, 2953 (2002).Google Scholar

  • 158.

    Clavier, N., Dacheux, N., Martinez, P., Du Fou de Kerdaniel, E., Aranda, L., Podor, R.: Sintering of β-thorium-uranium(IV) phosphate-diphosphate solid solutions from low-temperature precursors. Chem. Mater. 16, 3357 (2004).CrossrefGoogle Scholar

  • 159.

    Audubert, F., Bernache-Assolant, D.: Sintering investigation of silicate-apatite [Ca9Nd(SiO4)(PO4)5F2], In: P. Vincenzini (Ed.), Advances in Science and Technology – Proceedings of the 10th International Ceramics Congress - CIMTEC 2002. Part B, 31, 61 , Techna, Faenza (2003).Google Scholar

  • 160.

    Hirsch, A., Kegler, P., Alencar, I., Ruiz-Fuertes, J., Shelyug, A., Peters, L., Schreinemachers, C., Neumann, A., Neumeier, S., Liermann, H.-P., Navrotsky, A., Roth, G.: Structural, vibrational, and thermochemical properties of the monazite-type solid solution La1−xPrxPO4. J. Solid State Chem. 245, 82 (2017).CrossrefGoogle Scholar

  • 161.

    de Biasi, R. S., Fernandes, A. A. R., Oliveira, J. C. S.: Cell volumes of LaPO4 – CePO4 solid-solutions. J. Appl. Crystallogr. 20, 319 (1987).CrossrefGoogle Scholar

  • 162.

    Hou, Z. Y., Zhang, M. L., Wang, L. L., Lian, H. Z., Chai, R. T., Zhang, C. M., Cheng, Z. Y., Lin, J.: Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning. J. Solid State Chem. 182, 2332 (2009).CrossrefGoogle Scholar

  • 163.

    Heuser, J.: Keramiken des Monazit-Typs zur Immobilisierung von minoren Actinoiden und Plutonium. Ph.D. thesis, RWTH Aachen University, Aachen (2015).Google Scholar

  • 164.

    Wang, X., Teng, Y., Huang, Y., Wu, L., Zeng, P.: Synthesis and structure of Ce1-xEuxPO4 solid solutions for minor actinides immobilization. J. Nucl. Mater. 451, 147 (2014).CrossrefGoogle Scholar

  • 165.

    Yang, H., Teng, Y., Ren, X., Wu, L., Liu, H., Wang, S., Xu, L.: Synthesis and crystalline phase of monazite-type Ce1-xGdxPO4 solid solutions for immobilization of minor actinide curium. J. Nucl. Mater. 444, 39 (2014).CrossrefGoogle Scholar

  • 166.

    Begun, G. M., Beall, G. W., Boatner, L. A., Gregor, W. J.: Raman spectra of the rare earth orthophosphates. J. Raman Spectrosc. 11, 273 (1981).CrossrefGoogle Scholar

  • 167.

    Podor, R.: Raman spectra of the actinide-bearing monazites. Eur. J. Mineral. 7, 1353 (1995).CrossrefGoogle Scholar

  • 168.

    Silva, E. N., Ayala, A. P., Guedes, I., Paschoal, C. W. A., Moreira, R. L., Loong, C. K., Boatner, L. A.: Vibrational spectra of monazite-type rare-earth orthophosphates. Opt. Mater. 29, 224 (2006).CrossrefGoogle Scholar

  • 169.

    Thust, A., Arinicheva, Y., Haussühl, E., Ruiz-Fuertes, J., Bayarjargal, L., Vogel, S. C., Neumeier, S., Winkler, B.: Physical properties of La1−xEuxPO4, 0≤x≤1, monazite-type ceramics. J. Am. Ceram. Soc. 98, 4016 (2015).CrossrefGoogle Scholar

  • 170.

    Kowalski, P. M., Beridze, G., Vinograd, V., Bosbach, D.: Heat capacities of lanthanide and actinide monazite-type ceramics. J. Nucl. Mater. 464, 147 (2015).CrossrefGoogle Scholar

  • 171.

    Jahn, S., Kowalski, P. M.: Theoretical approaches to structure and spectroscopy of earth materials. Rev. Mineral. Geochem. 78, 691 (2014).CrossrefGoogle Scholar

  • 172.

    Blanca-Romero, A., Kowalski, P. M., Beridze, G., Schlenz, H., Bosbach, D.: DFT+U studies of monazite-type ceramics: predicting structural and thermodynamic parameters. J. Comput. Chem. 35, 1339 (2014).CrossrefGoogle Scholar

  • 173.

    Beridze, G., Birnie, A., Koniski, S., Ji, Y., Kowalski, P. M.: DFT+U as a reliable method for efficient ab initio calculations of nuclear materials. Prog. Nucl. Energy 92, 142 (2016).CrossrefGoogle Scholar

  • 174.

    Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).PubMedCrossrefGoogle Scholar

  • 175.

    Cococcioni, M., de Gironcoli, S.: Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).CrossrefGoogle Scholar

  • 176.

    Rustad, J. R.: Density functional calculations of the enthalpies of formation of rare-earth orthophosphates. Am. Mineral. 97, 791 (2012).CrossrefGoogle Scholar

  • 177.

    Kowalski, P. M., Beridze, G., Li, Y., Ji, Y., Friedrich, C., Şaşıoğlu, E., Blügel, S.: Feasible and reliable ab initio approach to computation of materials relevant for nuclear waste management. Ceram. Trans. 258, 207 (2016).Google Scholar

  • 178.

    Kowalski, P. M., Beridze, G., Ji, Y., Li, Y.: Towards reliable modeling of challenging f-electrons bearing materials: experience from modeling of nuclear materials. MRS Adv. 2, 491 (2017).CrossrefGoogle Scholar

  • 179.

    Feng, J., Xiao, B., Zhou, R., Pan, W.: Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 61, 7364 (2013).CrossrefGoogle Scholar

  • 180.

    Wang, J., Zhou, Y., Lin, Z.: First-principles elastic stiffness of LaPO4 monazite. Appl. Phys. Lett. 87, 051902 (2005).CrossrefGoogle Scholar

  • 181.

    Ali, K., Arya, A., Ghosh, P. S., Dey, G. K.: A first principle study of the pressure dependent elastic properties of monazite LaPO4. In: M. S. Shekhawat, S. Bhardwaj, B. Suthar (Eds.): International Conference on Condensed Matter and Applied Physics (ICC2015) (2016), p. 1728.Google Scholar

  • 182.

    Kowalski, P. M., Li, Y.: Relationship between the thermodynamic excess properties of mixing and the elastic moduli in the monazite-type ceramics. J. Eur. Ceram. Soc. 36, 2093 (2016).CrossrefGoogle Scholar

  • 183.

    Ji, Y., Beridze, G., Li, Y., Kowalski, P. M.: Large scale simulations of nuclear waste materials. Energy Procedia 127, 416 (2017).CrossrefGoogle Scholar

  • 184.

    Gomis, O., Lavina, B., Rodriguez-Hernandez, P., Munoz, A., Errandonea, R., Errandonea, D., Bettinelli, M.: High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4. J. Phys. Condens. Matter 29, 095401 (2017).CrossrefPubMedGoogle Scholar

  • 185.

    Kowalski, P. M., Ji, Y., Li, Y., Arinicheva, Y., Beridze, G., Neumeier, S., Bukaemskiy, A., Bosbach, D.: Simulation of ceramic materials for nuclear waste management: case of La1-xEuxPO4 solid solution. Nucl. Instrum. Methods B 393, 68 (2017).CrossrefGoogle Scholar

  • 186.

    López-Solano, J., Rodriguez-Hernandez, P., Munoz, A., Gomis, O., Santamaria-Perez, D., Errandonea, D., Manjon, F. J., Kumar, R. S., Stavrou, E., Raptis, C.: Theoretical and experimental study of the structural stability of TbPO4 at high pressures. Phys. Rev. B 81, 144126 (2010).CrossrefGoogle Scholar

  • 187.

    Stavrou, E., Tatsi, A., Raptis, C., Efthimiopoulos, I., Syassen, K., Munoz, A., Rodriguez-Hernandez, P., Lopez-Solano, J., Hanfland, M.: Effects of pressure on the structure and lattice dynamics of TmPO4: experiments and calculations. Phys. Rev. B 85, 024117 (2012).CrossrefGoogle Scholar

  • 188.

    Shein, I. R., Shalaeva, E. V.: Pressure-induced zircon to monazite phase transition in Y1-xLaxPO4: first-principles calculations. J. Struct. Chem. 57, 1513 (2016).CrossrefGoogle Scholar

  • 189.

    Bauer, J. D., Hirsch, A., Bayarjargal, L., Peters, L., Roth, G., Winkler, B.: Schottky contribution to the heat capacity of monazite type (La,Pr)PO4 from low temperature calorimetry and fluorescence measurements. Chem. Phys. Lett. 654, 97 (2016).CrossrefGoogle Scholar

  • 190.

    Li, Y., Kowalski, P. M., Beridze, G., Blanca-Romero, A., Ji, Y., Vinograd, V. L., Gale, J., Bosbach, D.: Atomistic simulations of ceramic materials relevant for nuclear waste management: cases of monazite and pyrochlore. Ceram. Trans. 255, 165 (2016).Google Scholar

  • 191.

    Ji, Y., Kowalski, P. M., Neumeier, S., Deismann, G., Kulriya, P. K., Gale, J. D.: Atomistic modeling and experimental studies of radiation damage in monazite-type LaPO4 ceramics. Nucl. Instrum. Methods B. 393, 54 (2017).CrossrefGoogle Scholar

  • 192.

    Jolley, K., Asuvathraman, R., Smith, R.: Inter-atomic potentials for radiation damage studies in CePO4 monazite. Nucl. Instrum. Methods B 393, 93 (2017).CrossrefGoogle Scholar

  • 193.

    Huittinen, N., Arinicheva, Y., Kowalski, P. M., Vinograd, V. L., Neumeier, S., Bosbach, D.: Probing structural homogeneity of La1-xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater. 486, 148 (2017).CrossrefGoogle Scholar

  • 194.

    Gao, F., Xiao, H. Y., Zhou, Y. G., Devanathan, R., Hua, S. Y., Li, Y. L., Sun, X., Khaleel, M. A.: Ab initio study of defect properties in YPO4. Comput. Mater. Sci. 54, 170 (2012).CrossrefGoogle Scholar

  • 195.

    Markus, I. M., Adelstein, N., Asta, M., De Jonghe, L. C.: Ab initio calculation of proton transport in DyPO4. J. Phys. Chem. C 118, 5073 (2014).CrossrefGoogle Scholar

  • 196.

    Chase, M. W. J.: NIST-JANAF thermochemical tables. American Inst. of Physics, New York (1998).Google Scholar

  • 197.

    Robie, R. A., Hemingway, B. S., Fisher, J. R.: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 pascals) Pressure and at Higher Temperatures, U.S. Geological survey bulletin 2131, Washington, 459 pp. (1978).Google Scholar

  • 198.

    Yungman, V. S.: Thermal Constants of Substances, Begell House, Danbury, CT (1999).Google Scholar

  • 199.

    Navrotsky, A.: Progress and new directions in calorimetry: a 2014 perspective. J. Am. Ceram. Soc. 97, 3349 (2014).CrossrefGoogle Scholar

  • 200.

    Navrotsky, A.: Mineralogy, materials science, energy, and environment: a 2015 perspective. Am. Mineral. 100, 674 (2015).CrossrefGoogle Scholar

  • 201.

    Sarge, S. M., Höhne, G. W. H., Hemminger, W. F.: Calorimetry: Fundamentals, Instrumentation and Applications, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2014).Google Scholar

  • 202.

    Sedmidubský, D., Beneš, O., Konings, R. J. M.: High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores. J. Chem. Thermodyn. 37, 1098 (2005).CrossrefGoogle Scholar

  • 203.

    Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).CrossrefGoogle Scholar

  • 204.

    Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).CrossrefGoogle Scholar

  • 205.

    Navrotsky, A.: High temperature oxide melt calorimetry of oxides and nitrides. In: “Huffman Lecture at ICCT 2000”. J. Chem. Thermodyn. 33, 859 (2001).CrossrefGoogle Scholar

  • 206.

    Levchenko, A., Marchin, L., Parlouer, P. L., Navrotsky, A.: The new high-temperature Setaram AlexSYS calorimeter and thermochemistry of alpha-CuMnO4. ITAS Bull. 2, 91 (2009).Google Scholar

  • 207.

    Ushakov, S. V., Navrotsky, A.: Experimental approaches to the thermodynamics of ceramics above 1500°C. J. Am. Ceram. Soc. 95, 1463 (2012).CrossrefGoogle Scholar

  • 208.

    Popa, K., Sedmidubský, D., Beneš, O., Thiriet, C., Konings, R. J. M.: The high-temperature heat capacity of LnPO4 (Ln=La, Ce, Gd) by drop calorimetry. J. Chem. Thermodyn. 38, 825 (2006).CrossrefGoogle Scholar

  • 209.

    Popa, K., Jutier, F., Wastin, F., Konings, R. J. M.: The heat capacity of NdPO4. J. Chem. Thermodyn. 38, 1306 (2006).CrossrefGoogle Scholar

  • 210.

    Navrotsky, A., Lee, W., Mielewczyk-Gryn, A., Ushakov, S. V., Anderko, A., Wu, H., Riman, R. E.: Thermodynamics of solid phases containing rare earth oxides. J. Chem. Thermodyn. 88, 126 (2015).CrossrefGoogle Scholar

  • 211.

    Gavrichev, K. S., Gurevich, V. M., Ryumin, M. A., Tyrin, A. V., Komissarova, l. N.: Low-temperature heat capacity and thermodynamic properties of PrPO4. Geochem. Int. 54, 362 (2016).CrossrefGoogle Scholar

  • 212.

    Ushakov, S. V., Navrotsky, A., Farmer, J. M., Boatner, L. A.: Thermochemistry of the alkali rare-earth double phosphates, A3RE(PO4)2. J. Mater. Res. 19, 2165 (2004).CrossrefGoogle Scholar

  • 213.

    Konings, R. J. M., Walter, M., Popa, K.: Excess properties of the (Ln2-2xCaxThx)(PO4)2 (Ln=La, Ce) solid solutions. J. Chem. Thermodyn. 40, 1305 (2008).CrossrefGoogle Scholar

  • 214.

    Rawat, D., Phapale, S., Mishra, R., Dash, S.: Thermodynamics studies on charge-coupled substituted synthetic monazite. J. Nucl. Mater. 487, 406 (2017).CrossrefGoogle Scholar

  • 215.

    Geisler, T., Popa, K., Konings, R. J. M.: Evidence for lattice strain and non-ideal behavior in the (La1−xEux)PO4 solid solution from X-ray diffraction and vibrational spectroscopy. Front. Earth Sci. 4, Article 64 (2016).Google Scholar

  • 216.

    Li, Y., Kowalski, P. M., Blanca-Romero, A., Vinograd, V., Bosbach, D.: Ab initio calculation of excess properties of La1−x(Ln,An)xPO4 solid solutions. J. Solid State Chem. 220, 137 (2014).CrossrefGoogle Scholar

  • 217.

    Mogilevsky, P., Boakye, E. E.: Solid solubility and thermal expansion in a LaPO4–YPO4 system. J. Am. Ceram. Soc. 90, 1899 (2007).CrossrefGoogle Scholar

  • 218.

    Thiriet, C., Konings, R. J. M., Wastin, F.: Low temperature heat capacity of PuPO4. J. Nucl. Mater. 344, 56 (2005).CrossrefGoogle Scholar

  • 219.

    Beneš, O., Popa, K., Reuscher, V., Zappia, A., Staicu, D., Konings, R. J. M.: High temperature heat capacity of PuPO4monazite-analogue. J. Nucl. Mater. 418, 182 (2011).CrossrefGoogle Scholar

  • 220.

    Popa, K., Shvareva, T., Mazeina, L., Colineau, E., Wastin, F., Konings, R. J. M., Navrotsky, A.: Thermodynamic properties of CaTh(PO4)2 synthetic cheralite. Am. Mineral. 93, 1356 (2008).CrossrefGoogle Scholar

  • 221.

    Meldrum, A., Cherniak, D.: Ion beams in the geological sciences. In: H. Bernas (Ed.), Materials Science with Ion Beams. Topics in Applied Physics, Springer, Berlin Heidelberg (2010), Vol. 116, p. 317.Google Scholar

  • 222.

    Deschanels, X., Seydoux-Guillaume, A., Magnin, V., Mesbah, A., Tribet, M., Moloney, M., Serruys, Y., Peuget, S.: Swelling induced by alpha decay in monazite and zirconolite ceramics: a XRD and TEM comparative study. J. Nucl. Mater. 448, 184 (2014).CrossrefGoogle Scholar

  • 223.

    Luo, J. S., Liu, G. K.: Microscopic effects of self-radiation damage in 244Cm-doped LuPO4 crystals. J. Mater. Res. 16, 366 (2001).CrossrefGoogle Scholar

  • 224.

    Weber, W. J., Ewing, R. C., Wang, L.-M.: The radiation-induced crystalline to amorphous transition in zircon. J. Mater. Res. 9, 688 (1994).CrossrefGoogle Scholar

  • 225.

    Karioris, F. G., Gowda, K. A., Cartz, L.: Heavy ion bombardment of monoclinic ThSiO4, ThO2 and monazite. Radiat. Eff. Lett. 58, 1 (1981).CrossrefGoogle Scholar

  • 226.

    Meldrum, A., Wang, L. M., Ewing, R. C.: Ion beam induced amorphisation of monazite. Nucl. Instrum. Methods B 116, 220 (1996).CrossrefGoogle Scholar

  • 227.

    Boatner, L., Sales, B.: Monazite. In: W. Lutze, R. C. Ewing, (Eds.), Radioactive Waste Forms for the Future, North Holland, Amsterdam (1988).Google Scholar

  • 228.

    Meldrum, A., Boatner, L. A., Ewing, R. C.: Displacive radiation effects in monazite- and zircon-structure orthophosphates. Phys. Rev. B 56, 13805 (1997).CrossrefGoogle Scholar

  • 229.

    Meldrum, A., Boatner, L. A., Zinkle, S. J., Wang, S.-X., Wang, L.-M., Ewing, R. C.: Effects of dose rate and temperature on the crystallie-to-metamict transformation in the ABO4 orthosilicates. Can. Mineral. 37, 207 (1999).Google Scholar

  • 230.

    Weber, W. J., Roberts, F. P.: A review of radiation effects in solid nuclear waste forms. Nucl. Technol. 60, 178 (1983).CrossrefGoogle Scholar

  • 231.

    Nasdala, L., Grotzschel, R., Probst, S., Bleisteiner, B.: Irradiation damage in monazite-(Ce): an example to establish the limits of Raman confocality and depth resolution. Can. Mineral. 48, 351 (2010).CrossrefGoogle Scholar

  • 232.

    Picot, V., Deschanels, X., Peuget, S., Glorieux, B., Seydoux-Guillaume, A. M., Wirth, R.: Ion beam radiation effects in monazite. J. Nucl. Mater. 381, 290 (2008).CrossrefGoogle Scholar

  • 233.

    Biersack, J. P., Haggmark, L. G.: A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 174, 257 (1980).CrossrefGoogle Scholar

  • 234.

    Ziegler, J. F., Biersack, J. P., Ziegler, M. D.: The stopping and range of ions in matter. Ion Implantation Press (2008), 398 pp.Google Scholar

  • 235.

    Ziegler, J. F., Ziegler, M. D., Biersack, J. P.: SRIM – the stopping and range of ions in matter. Nucl. Instrum. Methods B 268, 1818 (2010).CrossrefGoogle Scholar

  • 236.

    Tamain, C., Özgümüs, A., Dacheux, N., Garrido, F., Thomé, L.: Effects of irradiation on the thorium phosphate diphosphate ceramics and consequences on its dissolution. J. Nucl. Mater. 352, 217 (2006).CrossrefGoogle Scholar

  • 237.

    Tamain, C., Dacheux, N., Garrido, F., Habert, A., Barré, N., Özgümüs, A., Thomé, L.: Consequences of the ion beam irradiation on the chemical durability of thorium phosphate diphosphate – kinetics study. J. Nucl. Mater. 358, 190 (2006).CrossrefGoogle Scholar

  • 238.

    Tamain, C., Dacheux, N., Garrido, F., Thomé, L.: Irradiation effects on thorium phosphate diphosphate: chemical durability and thermodynamic study. J. Nucl. Mater. 362, 459 (2007).CrossrefGoogle Scholar

  • 239.

    Tamain, C., Garrido, F., Thomé, L., Dacheux, N., Özgümüs, A.: Structural behavior of β-thorium phosphate diphosphate (β-TPD) irradiated with ion beams. J. Nucl. Mater. 373, 378 (2008).CrossrefGoogle Scholar

  • 240.

    Robisson, A. C., Dacheux, N., Aupiais, J.: Influence of the pH on the dissolution of TPD and associated solid solutions. J. Nucl. Mater. 306, 134 (2002).CrossrefGoogle Scholar

  • 241.

    Clavier, N., du Fou de Kerdaniel, E., Dacheux, N., Le Coustumer, P., Drot, R., Ravaux, J., Simoni, E.: Behavior of thorium-uranium (IV) phosphate-diphosphate sintered samples during leaching tests. Part II. Saturation processes. J. Nucl. Mater. 349, 304 (2006).CrossrefGoogle Scholar

  • 242.

    USDOE. MCC-1 Static Test: Nuclear Waste Materials Handbook. US-Report-No. DOE/TIC 11400, Material Characterization Centre, Hanford (1984).Google Scholar

  • 243.

    Pierce, E. M., McGrail, B. P., Martin, P. F., Marra, J., Arey, B. W., Geiszler, K. N.: Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions. Appl. Geochem. 22, 1841 (2007).CrossrefGoogle Scholar

  • 244.

    Claparede, L., Clavier, N., Dacheux, N., Mesbah, A., Martinez, J., Szenknect, S., Moisy, P.: Multiparametric dissolution of thorium-cerium dioxide solid solutions. Inorg. Chem. 50, 11702 (2011).PubMedCrossrefGoogle Scholar

  • 245.

    Horlait, D., Tocino, F., Clavier, N., Dacheux, N., Szenknect, S.: Multiparametric study of Th1-xLnxO2-x/2 mixed oxides dissolution in nitric acid media. J. Nucl. Mater. 429, 237 (2012).CrossrefGoogle Scholar

  • 246.

    Horlait, D., Claperede, L., Tocino, F., Clavier, N., Ravaux, J., Szenknect, S., Podor, R., Dacheux, N.: Environmental SEM monitoring of Ce1-xLnxO2-x/2 mixed-oxide microstructural evolution during dissolution. J. Mater. Chem. A 2, 5193 (2014).CrossrefGoogle Scholar

  • 247.

    Claperede, L., Tocino, F., Szenknect, S., Mesbah, A., Clavier, N., Moisy, P., Dacheux, N.: Dissolution of Th1-xUxO2: effects of chemical composition and microstructure. J. Nucl. Mater. 457, 304 (2015).CrossrefGoogle Scholar

  • 248.

    Langmuir, D.: Aqueous Environmental Geochemistry, Upper Saddle River, N.J., Prentice Hall (1997), p. 600.Google Scholar

  • 249.

    du Fou de Kerdaniel, E.: Etude de la dissolution de britholites et de solutions solides monazite/brabantite dopées avec des actinides. Thèse de l‘Université Paris Sud-Paris XI, Paris (2007).Google Scholar

  • 250.

    Sales, B., White, C., Boatner, L.: A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste. Nucl. Chem. Waste Manage. 4, 281 (1983).CrossrefGoogle Scholar

  • 251.

    Ishida, M., Kikuchi, K., Yanagi, T., Terai, R.: Leaching behavior of crystalline phosphate waste forms. Nucl. Chem. Waste Manage. 6, 127 (1986).CrossrefGoogle Scholar

  • 252.

    Boatner, L., Abraham, M., Rappaz, M.: Analogs of monazite for the storage of radioactive wastes. Trans. Am. Nucl. Soc. 35, 186 (1980).Google Scholar

  • 253.

    Veilly, E., du Fou de Kerdaniel, E., Roques, J., Dacheux, N., Clavier, N.: Comparative behavior of britholites and monazite/brabantite solid solutions during leaching tests: a combined experimental and DFT approach. Inorg. Chem. 47, 10971 (2008).CrossrefPubMedGoogle Scholar

  • 254.

    Thomas, A., Dacheux, N., Le Coustumer, P., Brandel, V., Genet, M.: Kinetic and thermodynamic study of the thorium phosphate–diphosphate dissolution. J. Nucl. Mater. 281, 91 (2000).CrossrefGoogle Scholar

  • 255.

    Thomas, A. C., Dacheux, N., Le Coustumer, P., Brandel, V., Genet, M.: Kinetic and thermodynamic studies of the dissolution of thorium-uranium (IV) phosphate-diphosphate solid solutions. J. Nucl. Mater. 295, 249 (2001).CrossrefGoogle Scholar

  • 256.

    Dacheux, N.: Chimie des phosphates d‘actinides tétravalents. Le PDT en tant que matrice d‘immobilisation des actinides. Habilitation à Diriger des Recherches, Université Paris-Sud-11 (2002).Google Scholar

  • 257.

    Dacheux, N., Clavier, N., Ritt, J.: Behavior of thorium–uranium (IV) phosphate–diphosphate sintered samples during leaching tests. Part I – kinetic study. J. Nucl. Mater. 349, 291 (2006).CrossrefGoogle Scholar

  • 258.

    Dacheux, N., du Fou de Kerdaniel, E., Clavier, N., Podor, R., Aupiais, J., Szenknect, S.: Kinetics of dissolution of thorium and uranium doped britholites ceramics. J. Nucl. Mater. 404, 33 (2010).CrossrefGoogle Scholar

  • 259.

    Deissmann, G., Filby, A., Neumeier, S., Bosbach, D.: Solubility of lanthanidephosphates (LnPO4) and aqueous lanthanide speciation under repository relevant conditions. In: Symposium on Scientific Basis for Nuclear Waste Management XXXIX, MRS-Conference, Montpellier, France (2015).Google Scholar

About the article

Received: 2017-05-08

Accepted: 2017-08-21

Published Online: 2017-10-12

Published in Print: 2017-11-27


Citation Information: Radiochimica Acta, Volume 105, Issue 11, Pages 961–984, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2017-2819.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Yaqi Ji, Nigel A. Marks, Dirk Bosbach, and Piotr M. Kowalski
Journal of the European Ceramic Society, 2019
[3]
E. A. Potanina, A. I. Orlova, A. V. Nokhrin, D. A. Mikhailov, M. S. Boldin, N. V. Sakharov, O. A. Belkin, E. A. Lantsev, M. G. Tokarev, and V. N. Chuvil’deev
Russian Journal of Inorganic Chemistry, 2019, Volume 64, Number 3, Page 296
[4]
Yulia Arinicheva, Stefan Neumeier, Felix Brandt, Dirk Bosbach, and Guido Deissmann
MRS Advances, 2018, Volume 3, Number 21, Page 1133
[5]
Yaqi Ji, Piotr M. Kowalski, Philip Kegler, Nina Huittinen, Nigel A. Marks, Victor L. Vinograd, Yulia Arinicheva, Stefan Neumeier, and Dirk Bosbach
Frontiers in Chemistry, 2019, Volume 7
[6]
Julia M. Heuser, Stefan Neumeier, Lars Peters, Hartmut Schlenz, Dirk Bosbach, and Guido Deissmann
Journal of Solid State Chemistry, 2019, Volume 273, Page 45
[7]
Christoph Lenz, Gordon Thorogood, Robert Aughterson, Mihail Ionescu, Daniel J. Gregg, Joel Davis, and Gregory R. Lumpkin
Frontiers in Chemistry, 2019, Volume 7
[8]
Taisiya O. Shekunova, Sergey Ya. Istomin, Andrey V. Mironov, Alexander E. Baranchikov, Alexey D. Yapryntsev, Arsen A. Galstyan, Nikolay P. Simonenko, Andrey A. Gippius, Sergey V. Zhurenko, Tatyana B. Shatalova, Lyudmila S. Skogareva, and Vladimir K. Ivanov
European Journal of Inorganic Chemistry, 2019, Volume 2019, Number 27, Page 3242
[9]
K. M. Kenges, O. V. Proskurina, D. P. Danilovich, M. K. Aldabergenov, and V. V. Gusarov
Russian Journal of Applied Chemistry, 2018, Volume 91, Number 9, Page 1538
[10]
H. Schlenz, J. Dellen, P. Kegler, C. Gatzen, C. Schreinemachers, A. Shelyug, M. Klinkenberg, A. Navrotsky, and D. Bosbach
Journal of Solid State Chemistry, 2018
[11]
M. Toro-González, R. Copping, S. Mirzadeh, and J. V. Rojas
Journal of Materials Chemistry B, 2018
[12]
E.A. Potanina, A.I. Orlova, D.A. Mikhailov, A.V. Nokhrin, V.N. Chuvil'deev, M.S. Boldin, N.V. Sakharov, Е.А. Lantcev, M.G. Tokarev, and A.A. Murashov
Journal of Alloys and Compounds, 2018
[13]
M. Toro-González, D. M. Clifford, R. Copping, S. Mirzadeh, and J. V. Rojas
Journal of Nanoparticle Research, 2018, Volume 20, Number 9
[14]
Yulia Arinicheva, Clemence Gausse, Stefan Neumeier, Felix Brandt, Konstantin Rozov, Stéphanie Szenknect, Nicolas Dacheux, Dirk Bosbach, and Guido Deissmann
Journal of Nuclear Materials, 2018, Volume 509, Page 488
[15]
Bin Xiao, Henry Lösch, Nina Huittinen, and Moritz Schmidt
Chemistry - A European Journal, 2018
[16]
Mohamed Ruwaid Rafiuddin and Andrew P. Grosvenor
Journal of Nuclear Materials, 2018, Volume 509, Page 631
[17]
N. Jordan, M. Demnitz, H. Lösch, S. Starke, V. Brendler, and N. Huittinen
Inorganic Chemistry, 2018
[18]
Nina Huittinen, Andreas C. Scheinost, Yaqi Ji, Piotr M. Kowalski, Yulia Arinicheva, Andreas Wilden, Stefan Neumeier, and Thorsten Stumpf
Inorganic Chemistry, 2018
[19]
J.M. Heuser, R.I. Palomares, J.D. Bauer, M.J. Lozano Rodriguez, J. Cooper, M. Lang, A.C. Scheinost, H. Schlenz, B. Winkler, D. Bosbach, S. Neumeier, and G. Deissmann
Journal of the European Ceramic Society, 2018
[20]
Clémence Gausse, Stéphanie Szenknect, Adel Mesbah, Nicolas Clavier, Stefan Neumeier, and Nicolas Dacheux
Applied Geochemistry, 2018

Comments (0)

Please log in or register to comment.
Log in