Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 105, Issue 8

Issues

A thermodynamic model for the solubility of HfO2(am) in the aqueous K + – HCO3 − – CO32 − –  OH − – H2O system

Dhanpat Rai
  • Corresponding author
  • Rai Enviro-Chem, LLC, 1000 Hanley Drive, PO Box 784, Yachats, OR 97498-0784, USA, Tel.: (541) 547-4253, Fax: (541) 547-4239
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Akira Kitamura / Kevin M. Rosso
Published Online: 2017-03-11 | DOI: https://doi.org/10.1515/ract-2016-2623

Abstract

Solubility of HfO2(am) was determined as a function of KHCO3 concentrations ranging from 0.001 mol·kg−1 to 0.1 mol·kg−1. The solubility of HfO2(am) increased dramatically with the increase in KHCO3 concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO3 concentrations can best be described by the formation of Hf(OH)2(CO3)22− and Hf(CO3)56−. The log10 K0 values for the reactions [Hf4++2CO32−+2OH⇌Hf(OH)2(CO3)22−] and [Hf4++5CO32−⇌Hf(CO3)56−], based on the SIT model, were determined to be 44.53±0.46 and 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.

Keywords: Solubility; hafnium; carbonate; complexation constant; HfO2(am)

References

  • 1.

    Rai, D., Xia, Y., Hess, N. J., Strachan, D. M., McGrail, B. P.: Hydroxo and chloro complexes/ion-interactions of Hf4+ and the solubility product of HfO2(am). J. Solution Chem. 30, 949 (2001).CrossrefGoogle Scholar

  • 2.

    Rai, D., Kitamura, A., Rosso, K. M., Sasaki, T., Kobayashi, T.: Issues concerning the determination of solubility products of sparingly soluble crystalline solids: solubility of HfO2(cr). Radiochim. Acta 104, 583 (2016).Google Scholar

  • 3.

    Cerefice, G., Draye, M., Noyes, K. L., Czerwinski, K.: Environmental behavior of hafnium for the disposal of weapons-grade plutonium. Available from: http://www.wmsym.org/archives/1998/sess48/48-04/48-04.htm (1998).

  • 4.

    Dervin, J.: Sur la structure et la stabilité des carbonates complexes de Thorium(IV), Cerium(IV), Zirconium(IV), Hafnium(IV). Ph. D. Dissertation. Univ. of Reims Champagne-Ardenne (1972).Google Scholar

  • 5.

    João, A., Bigot, S., Fromage, F.: Etude des carbonates complexes des éléments IVB II – Détermination des constants d’équilibre de formamtion des tétracarbonatozirconate (IV) et -hafnate (IV). Bull. Soc. Chim. Fr. 6, 943 (1987).Google Scholar

  • 6.

    Karlysheva, K. F., Chumakova, L. S., Malinko, L. A., Sheka, I. A.: Reactioin of zirconium and hafnium oxide chlorides with sodium carbonate in solution. Russ. J. Inorg. Chem. 27, 1582 (1982).Google Scholar

  • 7.

    Brown, P. L., Curti, E., Grambow, B.: Chemical thermodynamics of zirconium. Elsevier B. V., Amsterdam (2005), p. 512.Google Scholar

  • 8.

    Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H.: Update on the chemical thermodynamics of uranium, plutonium, americium, and technetium. Elsevier B. V., Amsterdam (2003), p. 919.Google Scholar

  • 9.

    Östhols, E., Bruno, J., Grenthe, I.: On the influence of carbonate on mineral dissolution: III. The solubility of microcrystalline ThO2 in CO2-H2O media. Geochim. Cosmochim. Acta 58, 613 (1994).Google Scholar

  • 10.

    Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical thermodynamics of thorium. Organisation for Economic Co-operation and Development, Paris (2008), p. 900.Google Scholar

  • 11.

    Felmy, A. R.: GMIN: A computerized chemical equilibrium model using a constrained minimization of the Gibbs free energy. PNL-7281, Pacific Northwest National Laboratory, Richland (1990).Google Scholar

  • 12.

    Sterner, S. M., Felmy, A. R., Rustad, J. R., Pitzer, K. S.: Thermodynamic analysis of aqueous solutions using INSIGHT. PNWD-SA-4436, Pacific Northwest National Laboratory, Richland (1997), p. 107.Google Scholar

  • 13.

    Rai, D., Felmy, A. R., Ryan, J. L.: Uranium(IV) hydrolysis constants and solubility product of UO2.xH2O(am). Inorg. Chem. 29, 260 (1990).Google Scholar

  • 14.

    Rai, D., Hess, N. J., Felmy, A. R., Moore, D. A., Yui, M.: A Thermodynamic model for the solubility of NpO2(am) in the aqueous K+-HCO3--CO32--OH- -H2O system. Radiochim. Acta 84, 159 (1999).Google Scholar

  • 15.

    Rai, D., Hess, N. J., Xia, Y., Rao, L., Cho, H. M., Moore, R. C., Van Loon, L. R.: Comprehensive thermodynamic model applicable to highly acidic to basic conditions for isosaccharinate reactions with Ca(II) and Np(IV). J. Solution Chem. 32, 665 (2003).CrossrefGoogle Scholar

  • 16.

    Rai, D., Hess, N. J., Felmy, A. R., Moore, D. A., Yui, M., Vitorge, P.: A thermodynamic model for the solubility of PuO2(am) in the aqueous K--HCO3--CO32--OH--H2O system. Radiochim. Acta 86, 89 (1999).Google Scholar

  • 17.

    Harvie, C. E., Moller, N., Weare, J. H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO2-H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta 48, 723 (1984).Google Scholar

  • 18.

    Rai, D., Felmy, A. R., Hess, N. J., Moore, D. A., Yui, M.: A thermodynamic model for the solubility of UO2(am) in the aqueous K+-Na+-HCO3--CO32--OH--H2O system. Radiochim. Acta 82, 17 (1998).Google Scholar

  • 19.

    Lemire, R. J., Fuger, J., Nitsche, H., Potter, P., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, P., Wanner, H.: Chemical thermodynamics of neptunium and plutonium. Elsevier B. V., Amsterdam (2001), p. 845.Google Scholar

  • 20.

    Capdevila, H., Vitorge, P., Giffaut, E., Delmau, L.: Spectrophotometric study of the dissociation of the Pu(IV) carbonate limiting complex. Radiochim. Acta 74, 93 (1996).Google Scholar

  • 21.

    Clark, D. L., Condradson, S. D., Keogh, D. W., Palmer, P. D., Scott, B. L., Tait, C. D.: Identificatioin of the limiting species in plutonium(IV) carbonate system. Solid state and solution molecular structure of the [Pu(CO3)5}6- ion. Inorg. Chem. 37, 2893 (1998).Google Scholar

  • 22.

    Felmy, A. R., Rai, D., Sterner, S. M., Mason, M. J., Hess, N. J., Conradson, S. D.: Thermodynamic models for highly charged aqueous species: solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions. J. Solut. Chem. 26, 233 (1997).Google Scholar

  • 23.

    Voliotis, S., Rimsky, A.: Etude structurale des carbonates complexes de cérium et thorium: II. Structure cristalline et moléculaire du pentacarbonatothorate de guanidine tétrahydraté, [C(NH2)]6[Th(CO3)5]. Acta Crystallogr., Sect. B Struct. Sci. B31, 2611 (1975).Google Scholar

  • 24.

    Voliotis, S., Rimsky, A.: Etude structurale des carbonates complexes de cérium et thorium: III. Structure cristalline et moléculaire du pentacarbonatothorate de sodium dodécahydraté Na6[Th(CO3)5]. Acta Crystallogr., Sect. B: Struct. Sci. B31, 2620 (1975).CrossrefGoogle Scholar

  • 25.

    Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1970).Google Scholar

  • 26.

    Pouchon, M. A., Curti, E., Degueldre, C., Tobler, L.: The influence of carbonate complexes on the solubility of zirconia: new experimental data. Prog. Nucl. Energy 38, 443 (2001).Google Scholar

About the article

Received: 2016-04-29

Accepted: 2017-01-31

Published Online: 2017-03-11

Published in Print: 2017-07-26


Citation Information: Radiochimica Acta, Volume 105, Issue 8, Pages 637–647, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2016-2623.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. Baumann, E. Yalçıntaş, X. Gaona, R. Polly, K. Dardenne, T. Prüßmann, J. Rothe, M. Altmaier, and H. Geckeis
Dalton Transactions, 2018

Comments (0)

Please log in or register to comment.
Log in