Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 106, Issue 4

Issues

Redox behavior and solubility of plutonium under alkaline, reducing conditions

Agost Tasi
  • Corresponding author
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xavier Gaona
  • Corresponding author
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Fellhauer
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melanie Böttle
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörg Rothe
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kathy Dardenne
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dieter Schild
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mireia Grivé / Elisenda Colàs / Jordi Bruno / Klas Källström / Marcus Altmaier
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Horst Geckeis
  • Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-20 | DOI: https://doi.org/10.1515/ract-2017-2870

Abstract

The solubility and redox behavior of hydrous Pu(IV) oxide was comprehensively investigated by an experimental multi-method approach as a function of different redox conditions in 0.1 M NaCl solutions, allowing a detailed characterization of Pu(IV) and Pu(III) solubility and solid phase stability in these systems. Samples were prepared at ~3≤pHm≤~6 (pHm=–logmH+) and ~8≤pHm≤~13 at T=(22±2)°C under Ar atmosphere. No redox buffer was used in one set of samples, whereas mildly and strongly reducing redox conditions were buffered in two series with hydroquinone or SnCl2, respectively, resulting in (pe+pHm)=(9.5±1) and (2±1). XRD, XANES and EXAFS confirmed the predominance of Pu(IV) and the nanocrystalline character of the original, aged PuO2(ncr,hyd) solid phase used as a starting material. Rietveld analysis of the XRD data indicated an average crystal (domain) size of (4±1) nm with a mean cell parameter of (5.405±0.005) Å. The solubility constant of this solid phase was determined as log K°s,0=–(58.1±0.3) combining solubility data in acidic conditions and redox speciation by solvent extraction and CE–SF–ICP–MS. This value is in excellent agreement with the current thermodynamic selection in the NEA-TDB. Synchrotron-based in-situ XRD, XANES and EXAFS indicate that PuO2(ncr,hyd) is the solid phase controlling the solubility of Pu in hydroquinone buffered samples. Under these redox conditions and ~8≤pHm≤~13, the solubility of Pu is very low (~10−10.5 m) and pH-independent. This is consistent with the solubility equilibrium PuO2(am,hyd)+2H2O(l)⇔ Pu(OH)4(aq). Although in-situ XRD unequivocally shows the predominance of PuO2 in Sn(II)-buffered systems, XANES analyses indicate a significant contribution of Pu(III) (30±5%) in the solid phases controlling the solubility of Pu at (pe+pHm)=(2±1). For this system, EXAFS shows a systematic shortening of Pu–O and Pu–Pu distances compared to the starting Pu material and hydroquinone-buffered systems. The solubility of Pu remains very low (~10−10.5 m) at pHm>9, but shows a very large scattering (~10−9–10−10.5 m) at pHm=8. Experimental observations collected in Sn(II) buffered systems can be explained by the co-existence of both PuO2(ncr,hyd) and Pu(OH)3(am) solid phases, but also by assuming the formation of a sub-stoichiometric PuO2−x(s) phase. This extensive study provides robust upper limits for Pu solubility in alkaline, mildly to strongly reducing conditions relevant in the context of nuclear waste disposal. The potential role of Pu(III) in the solid phases controlling the solubility of Pu under these conditions is analysed and discussed in view of the current NEA-TDB thermodynamic selection, which supports the predominance of PuO2(am,hyd) and constrains the formation of Pu(OH)3(am) at pHm>8 outside the stability field of water.

Keywords: Plutonium; Pu(IV); Pu(III); solubility; alkaline; reducing conditions; thermodynamics

References

  • 1.

    SKB: Safety Analysis SFR 1. Long-Term Safety (2008), Svensk Kärnbränslehantering AB, Stockholm, Sweden.Google Scholar

  • 2.

    Neck, V., Altmaier, M., Fanghänel, T.: Solubility of plutonium hydroxides/hydrous oxides under reducing conditions and in the presence of oxygen. C. R. Chim. 10, 959 (2007).CrossrefGoogle Scholar

  • 3.

    Grenthe, I., Fuger, J., Lemire, R. J., Muller, A. B., Cregu, C. N., Wanner, H.: Chemical Thermodynamics, Vol. 1. Chemical Thermodynamics of Uranium (1992), OECD, NEA-TDB, Elsevier, North Holland, Amsterdam.Google Scholar

  • 4.

    Lemire, R. J., Fuger, J., Nitsche, H., Potter, P. E., Rand, M. H., Rydberg, J., Spahiu, K., Sullivan, J. C., Ullman, W. J., Vitorge, P., Wanner, H.: Chemical Thermodynamics, Vol. 4. Chemical Thermodynamics of Neptunium and Plutonium (2001), OECD, NEA-TDB, Elsevier, North Holland, Amsterdam.Google Scholar

  • 5.

    Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M. H.: Chemical Thermodynamics, Vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium (2003), OECD, NEA-TDB, Elsevier, North Holland, Amsterdam.Google Scholar

  • 6.

    Altmaier, M., Neck, V., Lützenkirchen, J., Fanghänel, T.: Solubility of plutonium in MgCl2 and CaCl2 solutions in contact with metallic iron. Radiochim. Acta 97, 187 (2009).Google Scholar

  • 7.

    Felmy, A. R., Rai, D., Schramke, J. A., Ryan, J. L.: The solubility of plutonium hydroxide in dilute solution and in high-ionic-strength chloride brines. Radiochim. Acta 48, 29 (1989).Google Scholar

  • 8.

    Nilsson, H.: The Chemistry of Plutonium Solubility, Ph.D. Thesis, Chalmers University of Technology (Nuclear Chemistry, Department of Materials and Surface Chemistry), Göteborg, Sweden (2004).Google Scholar

  • 9.

    Cho, H. R., Youn, Y. S., Jung, E. C., Cha, W.: Hydrolysis of trivalent plutonium and solubility of Pu(OH)3 (am) under electrolytic reducing conditions. Dalton Trans. 45, 19449 (2016).CrossrefGoogle Scholar

  • 10.

    Fujiwara, K., Yamana, H., Fujii, T., Moriyama, H.: Solubility product of plutonium hydrous oxide. J. Nucl. Fuel Cycle Environ. (Jpn.) 7, 17 (2001).Google Scholar

  • 11.

    Fujiwara, K., Yamana, H., Fujii, T., Moriyama, H.: Solubility product of plutonium hydrous oxide and its ionic strength dependence. Radiochim. Acta 9, 857 (2002).Google Scholar

  • 12.

    Rai, D., Gorby, Y. A., Fredrickson, J. K., Moore, D. A., Yui, M.: Reductive dissolution of PuO2(am): the effect of Fe(II) and hydroquinone. J. Solution Chem. 31, 433 (2002).CrossrefGoogle Scholar

  • 13.

    Kraus, K. A., Dam, J. R.: Hydrolytic Behavior of Plutonium (III) Acid-Base Titrations of Plutonium (III). Technical Report, AECD-2543 (CN-2832) (1945).Google Scholar

  • 14.

    Hubert, S., Hussonnois, M., Guillaumont, R.: Comportement du plutonium trivalent lors de son extraction par la thenoyltrifluoroacetone. J. Inorg. Nucl. Chem. 37, 1255 (1975).CrossrefGoogle Scholar

  • 15.

    Nair, G. M., Chander, K., Joshi, J. K.: Hydrolysis constants of plutonium(III) and americium(III). Radiochim. Acta 30, 37 (1982).Google Scholar

  • 16.

    Fellhauer, D.: Untersuchungen zur Redoxchemie und Löslichkeit von Neptunium und Plutonium, PhD-thesis, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany (2013).Google Scholar

  • 17.

    Powell, B. A., Fjeld, R. A., Kaplan, D. I., Coates, J. T., Serkiz, S. M.: Pu(V)O2+ adsorption and reduction by synthetic magnetite (Fe3O4). Environ. Sci. Technol. 38, 6016 (2004).CrossrefGoogle Scholar

  • 18.

    Powell, B. A., Duff, M. C., Kaplan, D. I., Fjeld, R. A., Newville, M., Hunter, D. B., Bertsch, P. M., Coates, J. T., Eng, P., Rivers, M. L., Serkiz, S. M., Sutton, S. R., Triay, I. R., Vaniman, D. T.: Plutonium oxidation and subsequent reduction by Mn(IV) minerals in Yucca Mountain tuff. Environ. Sci. Technol. 40, 3508 (2006).CrossrefGoogle Scholar

  • 19.

    Kirsch, R., Fellhauer, D., Altmaier, M., Neck, V., Rossberg, A., Fanghänel, T., Charlet, L., Scheinost, A. C.: Oxidation state and local structure of plutonium reacted with magnetite, mackinawite, and chukanovite. Environ. Sci. Technol. 45, 7267 (2011).CrossrefGoogle Scholar

  • 20.

    Felmy, A. R., Moore, D. A., Rosso, K. M., Qafoku, O., Rai, D., Buck, E. C., Ilton, E. S.: Heterogeneous reduction of PuO(2) with Fe(II): importance of the Fe(III) reaction product. Environ. Sci. Technol. 45, 3952 (2011).CrossrefGoogle Scholar

  • 21.

    Felmy, A. R., Moore, D. A., Pearce, C. I., Conradson, S. D., Qafoku, O., Buck, E. C., Rosso, K. M., Ilton, E. S.: Controls on soluble Pu concentrations in PuO2/magnetite suspensions. Environ. Sci. Technol. 46, 11610 (2012).CrossrefGoogle Scholar

  • 22.

    Felmy, A. R., Moore, D. A., Qafoku, O., Buck, E., Conradson, S. D., Ilton, E. S.: Heterogeneous reduction of 239PuO2 by aqueous Fe(II) in the presence of hematite. Radiochim. Acta 101, 701 (2013).Google Scholar

  • 23.

    González-Siso, M. R., Gaona, X., Duro, L., Schild, D., Fellhauer, D., Pidchenko, I., Vitova, T., Altmaier, M., Bruno, J.: Interaction of Pu, U and Tc with iron corrosion products under hyperalkaline reducing conditions. 15th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, MIGRATION 2015, Abstract book, p. 329 (2015).Google Scholar

  • 24.

    Altmaier, M., Metz, V., Neck, V., Müller, R., Fanghänel, T.: Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25°C. Geochim. Cosmochim. Acta 67, 3595 (2003).CrossrefGoogle Scholar

  • 25.

    Altmaier, M., Gaona, X., Fellhauer, D., Buckau, G.: FP7 EURATOM Collaborative Project “Redox Phenomena Controlling Systems” Intercomparison of redox determination methods on designed and near-natural aqueous systems, KIT Scientific Reports 7572, Karlsruhe, Germany (2010).Google Scholar

  • 26.

    Gamsjäger, H., Gajda, T., Sangster, J., Saxena, S. K., Voigt, W., Chemical Thermodynamics Series, Vol. 12. Chemical Thermodynamics of Tin (2012), NEA-TDB, Elsevier, North Holland, Amsterdam.Google Scholar

  • 27.

    Yalcintas, E., Gaona, X., Scheinost, A. C., Kobayashi, T., Altmaier, M., Geckeis, H.: Redox chemistry of Tc(VII)/Tc(IV) in dilute to concentrated NaCl and MgCl2 solutions. Radiochim. Acta 103, 57 (2015).Google Scholar

  • 28.

    Kobayashi, T., Scheinost, A. C., Fellhauer, D., Gaona, X., Altmaier, M.: Redox behavior of Tc(VII)/Tc(IV) under various reducing conditions in 0.1M NaCl solutions. Radiochim. Acta 101, 323 (2013).CrossrefGoogle Scholar

  • 29.

    Akatsu, J.: Separation of plutonium-238 from fission products by solvent extraction using HDEHP. J. Nucl. Sci. Technol. 10, 696 (1973).CrossrefGoogle Scholar

  • 30.

    Nitsche, H., Lee, S. C., Gatti, R. C.: Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal. J. Radioanal. Nucl. Chem. 124, 171 (1988).CrossrefGoogle Scholar

  • 31.

    Schramke, J. A., Rai, D., Fulton, R. W., Choppin, G. R.: Determination of aqueous plutonium oxidation states by solvent extraction. J. Radioanal. Nucl. Chem. 130, 333 (1989).CrossrefGoogle Scholar

  • 32.

    Nitsche, H., Roberts, K., Xi, R., Prussin, T., Becraft, K., Al Mahamid, I., Silber, H., Carpenter, S. A., Gatti, R. C., Novak, C. F.: Long term plutonium solubility and speciation studies in a synthetic brine. Radiochim. Acta 66, 3 (1994).Google Scholar

  • 33.

    Manchanda, V. K., Mohapatra, P. K.: 1-Phenyl-3-methyl-4-benzoyl-pyrazolone-5: a promising extractant for plutonium. Sep. Sci. Technol. 29, 1073 (1994).CrossrefGoogle Scholar

  • 34.

    Graser, C. H., Banik, N. L., Bender, K. A., Lagos, M., Marquardt, C. M., Marsac, R., Montoya, V., Geckeis, H.: Sensitive redox speciation of iron, neptunium, and plutonium by capillary electrophoresis hyphenated to inductively coupled plasma sector field mass spectrometry. Anal. Chem. 87, 9786 (2015).CrossrefGoogle Scholar

  • 35.

    Joint Committee on Powder Diffraction Standards: JCPDS-Powder Diffraction Files (2001), Swarthmore, USA.Google Scholar

  • 36.

    Rothe, J., Butorin, S., Dardenne, K., Denecke, M. A., Kienzler, B., Loble, M., Metz, V., Seibert, A., Steppert, M., Vitova, T., Walther, C., Geckeis, H.: The INE-Beamline for actinide science at ANKA. Rev. Sci. Instrum. 83, 043105 (2012).CrossrefGoogle Scholar

  • 37.

    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).CrossrefGoogle Scholar

  • 38.

    Brendebach, B., Banik, N. L., Marquardt, C. M., Rothe, J., Denecke, M., Geckeis, H.: X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values. Radiochim. Acta 97, 701 (2009).Google Scholar

  • 39.

    Walther, C., Rothe, J., Brendebach, B., Fuss, M., Altmaier, M., Marquardt, C. M., Büchner, S., Cho, H.-R., Yun, J. I., Seibert, A.: New insights in the formation processes of Pu(IV) colloids. Radiochim. Acta 97, 199 (2009).Google Scholar

  • 40.

    Stern, E. A., Newville, M., Ravel, B., Yacoby, Y., Haskel, D.: The UWXAFS analysis package – philosophy and details. Physica B 209, 117 (1995).Google Scholar

  • 41.

    Ankudinov, A. L., Ravel, B., Rehr, J. J., Conradson, S. D.: Realspace multiple-scattering calculation and interpretation of X-ray absorption near-edge structure. Phys. Rev. B 58, 7565 (1998).CrossrefGoogle Scholar

  • 42.

    De Nolf, W., Vanmeert, F., Janssens, K.: XRDUA: crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction. J. Appl. Crystallogr. 47, 1107 (2014).CrossrefGoogle Scholar

  • 43.

    Smrcok, L.: Rietveld refinement of Y2O3, using the Pearson VII profile shape function. Cryst. Res. Technol. 24, 607 (1989).CrossrefGoogle Scholar

  • 44.

    Seah, M. P., Gilmore, L. S., Beamson, G.: XPS: binding energy calibration of electron spectrometers 5 – re-evaluation of the reference energies. Surf. Interface Anal. 26, 642 (1998).CrossrefGoogle Scholar

  • 45.

    Zachariansen, W. H.: Crystal chemical studies of the 5f-series of elements. XII. New compounds representing known structure types. Acta Crystallogr. 2, 388 (1949).CrossrefGoogle Scholar

  • 46.

    Gardner, E. R., Markin, T. L., Street, R. S.: The plutonium-oxygen phase diagram. J. Inorg. Nucl. Chem. 27, 541 (1965).CrossrefGoogle Scholar

  • 47.

    Rothe, J., Walther, C., Brendebach, B., Büchner, S., Fuss, M., Denecke, M. A., Geckeis, H.: A combined XAFS, ESI TOF-MS and LIBD study on the formation of polynuclear Zr(IV), Th(IV) and Pu(IV) species. J. Phys. Conf. Ser. 190, 012188 (2009).CrossrefGoogle Scholar

  • 48.

    Rothe, J., Walther, C., Denecke, M., Fanghaenel, T.: XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis products. Inorg. Chem. 43, 4708 (2004).CrossrefGoogle Scholar

  • 49.

    Courteix, D., Chayrouse, J., Heintz, L., Baptist, R.: XPS study of Pu oxides. Solid State Commun. 39, 209 (1981).CrossrefGoogle Scholar

  • 50.

    Larson, D. T., Haschke, J. M.: XPS-AES characterization of plutonium oxides and oxide carbide. The existence of plutonium monoxide. Inorg. Chem. 20, 1945 (1981).Google Scholar

  • 51.

    Cox, L. E., Farr, J. D.: 4fbinding-energy shifts of the light-actinide dioxides and tetrafluorides. Phys. Rev. B 39, 11142 (1989).CrossrefGoogle Scholar

  • 52.

    Neck, V., Kim, J. I.: Solubility and hydrolysis of tetravalent actinides. Radiochim. Acta 89, 1–16 (2001).CrossrefGoogle Scholar

  • 53.

    Neck, V., Altmaier, M., Rabung, T., Lützenkirchen, J., Fanghänel, T.: Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: solubility, hydrolysis, and ternary Ca-M(III)-OH complexes. Pure Appl. Chem. 81, 1555 (2009).Google Scholar

  • 54.

    Gaona, X., Fellhauer, D., Altmaier, M.: Thermodynamic description of Np(VI) solubility, hydrolysis, and redox behavior in dilute to concentrated alkaline NaCl solutions. Pure Appl. Chem. 85, 2027 (2013).Google Scholar

  • 55.

    Gaona, X., Tits, J., Dardenne, K., Liu, X., Rothe, J., Denecke, M. A., Wieland, E., Altmaier, M.: Spectroscopic investigations of Np(V/VI) redox speciation in hyperalkaline TMA-(OH, Cl) solutions. Radiochim. Acta 100, 759 (2012).CrossrefGoogle Scholar

  • 56.

    Shannon, R. D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossrefGoogle Scholar

  • 57.

    Marcus, Y.: Thermodynamics of solvation of ions. J. Chem. Soc. Faraday Trans. 87, 2995 (1991).Google Scholar

  • 58.

    McNeilly, C. E.: The electrical properties of plutonium oxides. J. Nucl. Mater. 11, 53 (1964).CrossrefGoogle Scholar

  • 59.

    Atlas, L. M., Schlehman, G. J., Readey, D. W.: Defects in PuO2-x: density measurements at high temperature. J. Am. Ceram. Soc. 49, 624 (1966).CrossrefGoogle Scholar

  • 60.

    Haschke, J. M., Hodges, A. E., Bixby, G. E., Lucas, R. L.: The Reaction of Plutonium with Water: Kinetic and Equilibrium Behavior of Binary and Ternary Phases in the Pu+O+H System (1983), G.A. Riordan, Albuquerque Operations Office, U.S. Department of Energy, Golden, Colorado, USA.Google Scholar

  • 61.

    Dinh, L. N., Haschke, J. M., Saw, C. K., Allen, P. G., McLean, W.: Pu2O3 and the plutonium hydriding process. J. Nucl. Mater. 408, 171 (2011).CrossrefGoogle Scholar

  • 62.

    Haschke, J. M., Dinh, L. N., McLean, W.: The plutonium–oxygen phase diagram in the 25–900°C range: non-existence of the PuO1.515 phase. J. Nucl. Mater. 458, 275 (2015).CrossrefGoogle Scholar

  • 63.

    Petit, L., Svane, A., Szotek, Z., Temmerman, W. M., Stocks, G. M.: Electronic structure and ionicity of actinide oxides from first principles. Phys. Rev. B 81, 045108 (2010).CrossrefGoogle Scholar

  • 64.

    Haschke, J. M., Allen, T. H., Morales, L. A.: Reaction of plutonium dioxide with water: formation and properties of PuO2+x. Science 287, 285 (2000).CrossrefGoogle Scholar

  • 65.

    Conradson, S. D., Begg, B. D., Clark, D. L., Den Auwer, C., Espinosa-Faller, F. J., Gordon, P. L., Hess, N. J., Hess, R., Webster Keogh, D., Morales, L. A., Neu, M. P., Runde, W., Tait, C. D., Veirs, D. K., Villella, P. M.: Speciation and unusual reactivity in PuO2+x. Inorg. Chem. 42, 3715 (2003).CrossrefGoogle Scholar

  • 66.

    Neck, V., Altmaier, M., Seibert, A., Yun, J. I., Marquardt, C. M., Fanghänel, T.: Solubility and redox reactions of Pu(IV) hydrous oxide: evidence for the formation of PuO2+x(s, hyd). Radiochim. Acta 95, 193 (2007).Google Scholar

  • 67.

    Neck, V., Altmaier, M., Fanghänel, T.: Thermodynamic data for hydrous and anhydrous PuO2+x(s). J. Alloys Compd. 444–445, 464 (2007).Google Scholar

  • 68.

    Petit, L., Svane, A., Szotek, Z., Temmerman, W. M.: First-principles calculations of PuO2+-x. Science 301, 498 (2003).CrossrefGoogle Scholar

  • 69.

    Hummel, W.: Ionic Strength Corrections and Estimation of SIT Ion Interaction Coefficients (2009), P.S. Institut, Villigen, Switzerland.Google Scholar

About the article

Received: 2017-08-24

Accepted: 2017-10-27

Published Online: 2018-01-20

Published in Print: 2018-03-28


Citation Information: Radiochimica Acta, Volume 106, Issue 4, Pages 259–279, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2017-2870.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Thomas Dumas, David Fellhauer, Dieter Schild, Xavier Gaona, Marcus Altmaier, and Andreas C. Scheinost
ACS Earth and Space Chemistry, 2019
[2]
Martin M. Maiwald, David Fellhauer, Andrej Skerencak-Frech, and Petra J. Panak
Applied Geochemistry, 2019, Volume 104, Page 10
[3]
Jörg Rothe, Marcus Altmaier, Ron Dagan, Kathy Dardenne, David Fellhauer, Xavier Gaona, Ernesto González-Robles Corrales, Michel Herm, Kristina O. Kvashnina, Volker Metz, Ivan Pidchenko, Dieter Schild, Tonya Vitova, and and Horst Geckeis
Geosciences, 2019, Volume 9, Number 2, Page 91
[4]
Alexander Stolz, Kevin Jooß, Oliver Höcker, Jennifer Römer, Johannes Schlecht, and Christian Neusüß
ELECTROPHORESIS, 2018
[5]
A. Tasi, X. Gaona, D. Fellhauer, M. Böttle, J. Rothe, K. Dardenne, R. Polly, M. Grivé, E. Colàs, J. Bruno, K. Källstrom, M. Altmaier, and H. Geckeis
Applied Geochemistry, 2018
[6]
A. Tasi, X. Gaona, D. Fellhauer, M. Böttle, J. Rothe, K. Dardenne, R. Polly, M. Grivé, E. Colàs, J. Bruno, K. Källström, M. Altmaier, and H. Geckeis
Applied Geochemistry, 2018

Comments (0)

Please log in or register to comment.
Log in