Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 7

Issues

Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas

Heinz W. Gäggeler / Ilya Usoltsev
  • Paul Scherrer Institute, 5232 Villigen, Switzerland
  • Department for Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Eichler
  • Corresponding author
  • Paul Scherrer Institute, 5232 Villigen, Switzerland
  • Department for Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-17 | DOI: https://doi.org/10.1515/ract-2018-3076

Abstract

Fission products recoiling from a 252Cf spontaneous fission source were stopped in various mixtures of inert gases containing CO and NO. For the elements of the transisition metal series Mo, Tc, Ru, and Rh previous observations of pure carbonyl complexes were reproduced. However, no formation of volatile mixed nitrosyl-carbonyl complexes or pure nitrosyl complexes for these elements have been observed. Instead, efficient production of volatile nitrosyl compounds for single iodine atoms, presumably nitrosyl iodide, NOI, was detected. This observation is of interest as potential transport path for iodine in nuclear accident scenarios and as a model for radiochemistry with the recently discovered heaviest halogen tennessine (Z=117).

Keywords: Nitrosyl; carbonyl; nitrosyl iodide; fission products; tennessine

Dedicated to: The memory of Professor Günter Herrmann.

References

  • 1.

    Türler, A., Pershina, V.: Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237 (2013).PubMedCrossrefWeb of ScienceGoogle Scholar

  • 2.

    Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z≥104 in gas phase. Nucl. Phys. A 944, 640 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Even, J., Yakushev, A., Duellmann, C. E., Dvorak, J., Eichler, R., Gothe, O., Hild, D., Jäger, E., Khuyagbaatar, J., Kratz, J.-V., Krier, J., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer D.: Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions. Inorg. Chem. 51(12), 6431 (2012).Web of ScienceCrossrefPubMedGoogle Scholar

  • 4.

    Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Even, J., Yakushev, A., Duellmann, C. E., Dvorak, J., Eichler, R., Gothe, O., Hild, D., Jäger, E., Khuyagbaatar, J., Kratz, J.-V., Krier, J., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer D.: In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim. Acta 102, 1093 (2014).Web of ScienceGoogle Scholar

  • 6.

    Wang, Y., Qin, Z., Fan, F. L., Fan, F. Y., Cao, S. W., Wu, X. L., Zhang, X., Bai, J., Yin, X. J., Tian, L. L., Zhao, L., Tian, W., Li, Z., Tan, C. M., Guo, J. S., Gaggeler, H. W.: Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim. Acta 102, 69 (2014).Web of ScienceGoogle Scholar

  • 7.

    Wang, Y., Qin, Z., Fan, F.L., Haba, H., Komori, Y., Wu, X., Tan, C., Zhang, X.: Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 17(20), 13228 (2015).CrossrefWeb of SciencePubMedGoogle Scholar

  • 8.

    Even, J., Ackermann, D., Asai, M., Block, M., Brand, H., Di Nitto, A., Düllmann, Ch. E., Eichler, R., Fan, F., Haba, H., Hartmann, W., Hübner, A., Heßberger, F. P., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Laatiaoui, M., Lommel, B., Maurer, J., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Sato, T. K., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: In situ synthesis of volatile carbonyl complexes with short-lived nuclides. J. Radioanal. Nucl. Chem. 303, 2457 (2015).Web of ScienceGoogle Scholar

  • 9.

    Cao, S., Wang, Y., Qin, Z., Fan, F. Y., Haba, H., Komori, Y., Wu, X., Tan, C., Zhang, X.: Gas-phase chemistry of ruthenium and rhodium carbonyl complexes. Phys. Chem. Chem. Phys. 18, 119 (2016).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 10.

    Even, J., Yakushev, A., Düllmann, C. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seaborgium carbonyl complex. Science 345(6203), 1491 (2014).Web of SciencePubMedCrossrefGoogle Scholar

  • 11.

    Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Brand, H., Di Nitto, A., Düllmann, C. E., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Sato, T. K., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z.: Decomposition studies of group 6 hexacarbonyl complexes. Part 1: production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 104, 141 (2016).Web of ScienceGoogle Scholar

  • 12.

    Usoltsev, I., Eichler, R., Türler, A.: Decomposition studies of group 6 hexacarbonyl complexes. Part 2: modelling of the decomposition process. Radiochim. Acta 104, 531 (2016).Web of ScienceGoogle Scholar

  • 13.

    Nash, C. S., Bursten, B. E.: Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J. Am. Chem. Soc. 121, 10830 (1999).CrossrefGoogle Scholar

  • 14.

    Pershina, V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg. J. Chem. Phys. 138, 174301 (2013).Web of ScienceCrossrefPubMedGoogle Scholar

  • 15.

    Iliaš, M., Pershina, V.: Hexacarbonyls of Mo, W, and Sg: Metal−CO bonding revisited. Inorg. Chem. 56, 1638 (2017).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 16.

    Monacada, S., Palmer, M. J., Higgs, E. A.: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43(2), 109 (1991).PubMedGoogle Scholar

  • 17.

    Shafirovich, V., Lymar, S. V.: Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide. PNAS 99(11), 7340 (2002).CrossrefPubMedGoogle Scholar

  • 18.

    Rattat, D., Verbruggen, A., Berke, H., Alberto, R.: Exploring the nitrosyl approach: “Re(CO)2(NO)” and “Tc(CO)2(NO)” complexes provide new pathways for bioorganometallic chemistry. J. Organometal. Chem. 689, 4833 (2004).CrossrefGoogle Scholar

  • 19.

    Wang, X., Zhou, M., Andrews, L.: Manganese carbonyl nitrosyl complexes in solid argon: infrared spectra and density functional calculations. J. Phys. Chem. A 104, 7964 (2000).CrossrefGoogle Scholar

  • 20.

    Richter-Addo, G. B., Legzdins, P.: Recent organometallic nitrosyl chemistry. Chem. Rev. 88, 991 (1988).CrossrefGoogle Scholar

  • 21.

    Hollemann A. F., Wiberg E.: In: Inorganic Chemistry 100th ed. (1985). W. de Gruyter, Berlin and New York, p. 597.Google Scholar

  • 22.

    Beckham, L. J., Fessler, W.A., Kise M. A.: Nitrosyl chloride. Chem. Rev. 48(3), 319 (1951).Google Scholar

  • 23.

    Gay-Lussac, J. L.: Extrait d’un Mémoire sur l’eau régale. Compt. Rend. 26, 619 (1848).Google Scholar

  • 24.

    Loock, H.-P., Qian, C. X. W.: Photodissociation studies on nitrosyl bromide: I. Photofragment spectroscopy and electronic structure. J. Chem. Phys. 108, 3178 (1998).CrossrefGoogle Scholar

  • 25.

    Bailleuxa, S., Duflota, D., Aibab, S., Nakahamab, S., Ozekiba, H.: Nitrosyl iodide, INO: a combined ab initio and high-resolutionspectroscopic study. Chem. Phys. Lett. 650, 73 (2016).CrossrefGoogle Scholar

  • 26.

    O’Driscoll, P., Minogue, N., Takenaka, N., Sodeau, J.: Release of nitric oxide and iodine to the atmosphere from the freezing of sea-salt aerosol components. J. Phys. Chem. A 112(8), 1677 (2008).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 27.

    O’Neill, E., Hinrichs, R. Z.: Production of molecular iodine from the heterogeneous reaction of nitrogen dioxide with solid potassium iodide, J. Geophys. Res. 116, D01301 (2011).Web of ScienceGoogle Scholar

  • 28.

    Eichler, R., Eichler, B.: Thermochemical data from gas-phase adsorption and methods of their estimation. In: The Chemistry of Superheavy Elements (2014). Schädel M.; Shaughnessy D. (eds.). Springer Verlag, Berlin Heidelberg, p. 375.Google Scholar

  • 29.

    Chase, M. W., Jr.: In: NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data 9, 1 (1998).Google Scholar

  • 30.

    Hermann, A., Hoffmann, R., Ashcroft, N. W.: Condensed astatine: monatomic and metallic. Phys. Rev. Lett. 111, 116404 (2013).PubMedCrossrefGoogle Scholar

  • 31.

    Eichler, B.: Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z=114. Kernenergie 19, 307 (1976).Google Scholar

  • 32.

    Borschevsky, A., Pasteka, F., Pershina, V., Eliav E., Kaldor U.: Ionization potentials and electron affinities of the superheavy elements 115–117 and their sixth-row homologues Bi, Po, and At. Phys. Rev. A 91, 020501 (2015).Web of ScienceCrossrefGoogle Scholar

  • 33.

    Düllmann, C. E., Eichler, B., Eichler, R., Gäggeler, H. W., Jost, D., Kindler, U., Piguet, D., Soverna, S., Törle, P., Trautmann, N., Türler, A.: Miss Piggy, a californium-252 fission fragment source as a generator of short-lived radionuclides. Nucl. Instr. Meth. A 512, 595 (2003).CrossrefGoogle Scholar

  • 34.

    Oganessian, Y. T., Abdullin, F. S., Alexander, C., Binder, J., Boll, R. A., Dmitriev, S. N., Ezold, J., Felker, K., Gostic, J. M., Grzywacz, R. K., Hamilton, J. H., Henderson, R. A., Itkis, M. G., Miernik, K., Miller, D., Moody, K. J., Polyakov, A. N., Ramayya, A. V., Roberto, J. B., Ryabinin, M. A., Rykaczewski, K. P., Sagaidak, R. N., Shaughnessy, D. A., Shirokovsky, I. V., Shumeiko, M. V., Stoyer, M. A., Stoyer, N. J., Subbotin, V. G., Sukhov, A. M., Tsyganov, Y. S., Utyonkov, V. K., Voinov, A. A., Vostokin, G. K.: Production and decay of the heaviest nuclei 293;294117 and 294118. Phys. Rev. Lett. 109, 162501 (2012).Google Scholar

  • 35.

    Eichler, R., Aksenov, N. V., Albin, Y. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Henderson, R. A., Johnsen, A. M., Kenneally, J. M., Lebedev, V. Y., Malyshev, O. N., Moody, K. J., Oganessian, Y. T., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Serov, A., Shaughnessy, D. A., Shishkin, S. V., Shutov, A. V., Stoyer, M. A., Stoyer, N. J., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Wilk, P. A., Wittwer, D., Yeremin, A. V.: Indication for a volatile element 114. Radiochim. Acta 98, 133 (2010).Web of ScienceGoogle Scholar

  • 36.

    Neumayr, J. B., Thirolf, P. G., Habs, D., Heinz, S., Kolhinen, S. S., Sewtz, M., Szerypo, J.: Performance of the MLL-IonCatcher. Rev. Sci. Instr. 77, 065109 (2006).CrossrefGoogle Scholar

About the article

Received: 2018-11-02

Accepted: 2018-12-19

Published Online: 2019-01-17

Published in Print: 2019-07-26


Citation Information: Radiochimica Acta, Volume 107, Issue 7, Pages 555–560, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-3076.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christoph E. Düllmann
Radiochimica Acta, 2019, Volume 107, Number 7, Page 587

Comments (0)

Please log in or register to comment.
Log in