Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

See all formats and pricing
More options …
Volume 107, Issue 7


Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements

Sebastian Raeder
  • Corresponding author
  • Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
  • Helmholtz-Institut Mainz, 55099 Mainz, Germany
  • GSI Gesellschaft für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nina Kneip / Tobias Reich / Dominik Studer / Norbert Trautmann / Klaus Wendt
Published Online: 2019-06-01 | DOI: https://doi.org/10.1515/ract-2019-0001


Resonance ionization mass spectrometry is an efficient tool to detect minute amounts of long-lived radio-isotopes in environmental samples. Applying resonant excitation and ionization with pulsed laser radiation within a hot cavity atomizer enables the sensitive detection and precise quantification of long-lived actinide isotopes. Due to the inherently element selective ionization process, this method ensures ultimate suppression of contaminations from other elements and molecules. The characterization of in-source resonance ionization of the actinide elements U, Th, Np, and Am using a compact quadrupole mass spectrometer (QMS) setup are discussed.

Keywords: Resonance ionization; mass spectrometry; RIMS; trace analysis; actinides

Dedicated to the memory of Professor Günter Herrmann.


  • 1.

    Richter, S., Alonso, A., De Bolle, W., Wellum, R., Taylor, P. D. P.: Isotopic “fingerprints” for natural uranium ore samples. Int. J. Mass Spectrom. 193(1), 9 (1999).CrossrefGoogle Scholar

  • 2.

    Kristo, M. J., Gaffney, A. M., Marks, N., Knight, K., Cassata, W. S., Hutcheon, I. D.: Nuclear forensic science: analysis of nuclear material out of regulatory control. Annu. Rev. Earth Planet. Sci. 44(1), 555 (2016).CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Bürger, S., Banik, N. L., Buda, R. A., Kratz, J. V., Kuczewski, B., Trautmann, N.: Speciation of the oxidation states of plutonium in aqueous solutions by UV/Vis spectroscopy, CE-ICP-MS and CE-RIMS. Radiochim. Acta 95(8), 433 (2007).Web of ScienceGoogle Scholar

  • 4.

    Hou, X., Roos, P.: Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal. Chim. Acta 608(2), 105 (2008).Web of SciencePubMedCrossrefGoogle Scholar

  • 5.

    Steier, P., Bichler, M., Fifield, L. K., Golser, R., Kutschera, W., Priller, A., Quinto, F., Richter, S., Srncik, M., Terrasi, P., Wacker, L., Wallner, A., Wallner, G., Wilcken, K. M., Wild, E. M.: Natural and anthropogenic 236U in environmental samples. Nucl. Instrum. Methods Phys. Res. Sect. B 266(10), 2246 (2008).CrossrefGoogle Scholar

  • 6.

    Bürger, S., Riciputi, L. R., Bostick, D. A., Turgeon, S., McBay, E. H., Lavelle, M.: Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry. Int. J. Mass Spectrom. 286(2–3), 70 (2009).Web of ScienceCrossrefGoogle Scholar

  • 7.

    Becker, J. S.: Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides. Int. J. Mass Spectrom. 242(2–3), 183 (2005).CrossrefGoogle Scholar

  • 8.

    Hurst, G. S., Payne, M. G.: Principles and applications of resonance ionisation spectroscopy. A. Hilger, CRC Press, Boca Raton, FL, USA (1988).Google Scholar

  • 9.

    Müller, P., Bushaw, B. A., Blaum, K., Diel, S., Geppert, C., Nähler, A., Trautmann, N., Nörtershäuser, W., Wendt, K.: Ca-41 ultratrace determination with isotopic selectivity >1012 by diode-laser-based RIMS. Fresenius J. Anal. Chem. 370(5), 508 (2001).CrossrefGoogle Scholar

  • 10.

    Lu, Z. T., Wendt, K. D. A.: Laser-based methods for ultrasensitive trace-isotope analyses. Rev. Sci. Instrum. 74(3), 1169 (2003).CrossrefGoogle Scholar

  • 11.

    Raeder, S., Fies, S., Tomita, H., Wendt, K. D. A.: Selective isotope determination of uranium using HR-RIMS. In: AIP Conference Proceedings, vol. 1104, p. 96 (2009).Google Scholar

  • 12.

    Grüning, C., Huber, G., Klopp, P., Kratz, J. V., Kunz, P., Passler, G., Trautmann, N., Waldek, A., Wendt, K.: Resonance ionization mass spectrometry for ultratrace analysis of plutonium with a new solid state laser system. Int. J. Mass Spectrom. 235(2), 171 (2004).CrossrefGoogle Scholar

  • 13.

    Wendt, K., Trautmann, N.: Recent developments in isotope ratio measurements by resonance ionization mass spectrometry. Int. J. Mass Spectrom. 242(2–3), 161 (2005).CrossrefGoogle Scholar

  • 14.

    Wendt, K., Geppert, C., Mattolat, C., Passler, G., Raeder, S., Schwellnus, F., Wies, K., Trautmann, N.: Progress of ultra trace determination of technetium using laser resonance ionization mass spectrometry. Anal. Bioanal. Chem. 404(8), 2173 (2012).Web of ScienceCrossrefPubMedGoogle Scholar

  • 15.

    Trautmann, N.: Ultratrace analysis of technetium. Radiochim. Acta 63(S1), 37 (1993).Google Scholar

  • 16.

    Schönberg, P., Mokry, C., Runke, J., Schönenbach, D., Stöbener, N., Thörle-Pospiech, P., Trautmann, N., Reich, T.: Application of resonance ionization mass spectrometry for ultratrace analysis of technetium. Anal. Chem. 89(17), 9077 (2017).Web of ScienceCrossrefPubMedGoogle Scholar

  • 17.

    Maul, J., Strachnov, I., Eberhardt, K., Karpuk, S., Passler, G., Trautmann, N., Wendt, K., Huber, G.: Spatially resolved ultra-trace analysis of elements combining resonance ionization with a MALDI-TOF spectrometer. Anal. Bioanal. Chem. 386(1), 109 (2006).PubMedCrossrefGoogle Scholar

  • 18.

    Isselhardt, B. H., Savina, M. R., Knight, K. B., Pellin, M. J., Hutcheon, I. D., Prussin, S. G.: Improving precision in resonance ionization mass spectrometry: influence of laser bandwidth in uranium isotope ratio measurements. Anal. Chem. 83(7), 2469 (2011).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 19.

    Levine, J., Savina, M. R., Stephan, T., Dauphas, N., Davis, A. M., Knight, K. B., Pellin, M. J.: Resonance ionization mass spectrometry for precise measurements of isotope ratios. Int. J. Mass Spectrom. 288(1–3), 36 (2009).CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Franzmann, M., Bosco, H., Hamann, L., Walther, C., Wendt, K.: Resonant laser–SNMS for spatially resolved and element selective ultra-trace analysis of radionuclides. J. Anal. At. Spectrom. 33(5), 730 (2018).CrossrefWeb of ScienceGoogle Scholar

  • 21.

    Köster, U., Fedoseyev, V. N., Mishin, V. I.: Resonant laser ionization of radioactive atoms. Spectrochim. Acta B 58(6), 1047 (2003).CrossrefGoogle Scholar

  • 22.

    Marsh, B. A.: Resonance ionization laser ion sources for on-line isotope separators (invited). Rev. Sci. Instrum. 85(2), 02B923 (2014).PubMedWeb of ScienceCrossrefGoogle Scholar

  • 23.

    Raeder, S., Hakimi, A., Stöbener, N., Trautmann, N., Wendt, K.: Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry. Anal. Bioanal. Chem. 404(8), 2163 (2012).PubMedWeb of ScienceCrossrefGoogle Scholar

  • 24.

    Raeder, S., Sonnenschein, V., Gottwald, T., Moore, I. D., Reponen, M., Rothe, S., Trautmann, N., Wendt, K.: Resonance ionization spectroscopy of thorium isotopes – towards a laser spectroscopic identification of the low lying 7.6 eV isomer of 229Th. J. Phys. B 44(16), 165005 (2011).CrossrefGoogle Scholar

  • 25.

    Naubereit, P., Marn-Sáez, J., Schneider, F., Hakimi, A., Franzmann, M., Kron, T., Richter, S., Wendt, K.: Resonance ionization spectroscopy of sodium Rydberg levels using difference frequency generation of high-repetition-rate pulsed Ti:sapphire lasers. Phys. Rev. A 93(5), 052518 (2016).CrossrefWeb of ScienceGoogle Scholar

  • 26.

    Geppert, C.: Laser systems for on-line laser ion sources. Nucl. Instrum. Methods Phys. Res. Sect. B 266(19), 4354 (2008).CrossrefGoogle Scholar

  • 27.

    Mattolat, C., Rothe, S., Schwellnus, F., Gottwald, T., Raeder, S., Wendt, K.: An all-solid-state high repetition rate titanium:sapphire laser system for resonance ionization laser ion sources. In: AIP Conference Proceedings, vol. 1104, p. 114 (2009).Google Scholar

  • 28.

    Raeder, S., Stöbener, N., Gottwald, T., Passler, G., Reich, T., Trautmann, N., Wendt, K.: Determination of a three-step excitation and ionization scheme for resonance ionization and ultratrace analysis of Np-237. Spectrochim. Acta Part B 66(3–4), 242 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Raeder, S., Fies, S., Gottwald, T., Mattolat, C., Rothe, S., Wendt, K.: In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium. Hyperfine Interact. 196, 71 (2010).CrossrefGoogle Scholar

  • 30.

    Blaise, J., Wyart, J. F.: Energy levels and atomic spectra of actinides. Tables Selected Constants 20(8), 412 (1992).Google Scholar

  • 31.

    Liu, Y., Batchelder, J. C., Galindo-Uribarri, A., Chu, R., Fan, S., Romero-Romero, E., Stracener, D. W.: Ion source development for ultratrace detection of uranium and thorium. Nucl. Instrum. Methods Phys. Res. B 361, 267 (2015).CrossrefGoogle Scholar

  • 32.

    Gadelshin, V., Cocolios, T., Fedoseev, V., Heinke, R., Kieck, T., Marsh, B., Naubereit, P., Rothe, S., Stora, T., Studer, D., van Duppen, P., Wendt, K.: Laser resonance ionization spectroscopy on lutetium for the MEDICIS project. Hyperfine Interact. 238(1), 28 (2017).CrossrefGoogle Scholar

  • 33.

    Raeder, S., Dombsky, M., Heggen, H., Lassen, J., Quenzel, T., Sjödin, M., Teigelhöfer, A., Wendt, K.: In-source laser spectroscopy developments at TRILIS – towards spectroscopy on actinium and scandium. Hyperfine Interact. 216(1–3), 33 (2013).CrossrefGoogle Scholar

  • 34.

    Backe, H., Hies, M., Kunz, H., Lauth, W., Curtze, O., Schwamb, P., Sewtz, M., Theobald, W., Zahn, R., Eberhardt, K., Trautmann, N., Habs, D., Repnow, R., Fricke, B.: Isotope shift measurements for superdeformed fission isomeric states. Phys. Rev. Lett. 80, 920 (1998).CrossrefGoogle Scholar

  • 35.

    Campbell, P., Moore, I. D., Pearson, M. R.: Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016).CrossrefGoogle Scholar

  • 36.

    Köhler, S., Deißenberger, R., Eberhardt, K., Erdmann, N., Herrmann, G., Huber, G., Kratz, J. V., Nunnemann, M., Passler, G., Rao, P. M., Riegel, J., Trautmann, N., Wendt, K.: Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy. Spectrochim. Acta B 52(6), 717 (1997).CrossrefGoogle Scholar

  • 37.

    Bushaw, B. A., Nörtershäuser, W., Wendt, K.: Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry. Spectrochim. Acta B 54(2), 321 (1999).CrossrefGoogle Scholar

  • 38.

    Sonnenschein, V., Moore, I. D., Khan, H., Pohjalainen, I., Reponen, M.: Characterization of a dual-etalon Ti:sapphire laser via resonance ionization spectroscopy of stable copper isotopes. Hyperfine Interact. 227(1–3), 113 (2014).CrossrefGoogle Scholar

About the article

Received: 2018-12-27

Accepted: 2019-05-02

Published Online: 2019-06-01

Published in Print: 2019-07-26

Funding Source: Bundesministerium für Bildung und Forschung

Award identifier / Grant number: 05P12UMCIA

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF, Germany) under the consecutive projects 05P12UMCIA, Funder Id: http://dx.doi.org/10.13039/501100002347 and 05P15UMCIA, Funder Id: http://dx.doi.org/10.13039/501100002347 as well as by the project 02NUK044B, Funder Id: http://dx.doi.org/10.13039/501100002347. Additional funds were provided by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the interdisciplinary research training group GRK 826, Funder Id: http://dx.doi.org/10.13039/501100001659 “Spurenanalytik von Elementspezies: Methodenentwicklungen und Anwendungen”.

Citation Information: Radiochimica Acta, Volume 107, Issue 7, Pages 645–652, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2019-0001.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in