Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 7

Issues

Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure

Michael Block
  • Corresponding author
  • Institut für Kernchemie der Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
  • GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
  • Helmholtz-Institut Mainz, 55099 Mainz, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-18 | DOI: https://doi.org/10.1515/ract-2019-0002

Abstract

The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins and electromagnetic moments of exotic nuclides has recently been extended to the region of the heaviest elements. To this end, ion trap-based techniques and laser spectroscopy methods have been employed to provide information complementary to that obtained by nuclear spectroscopy. This enables more detailed studies of the atomic and nuclear structure of these exotic nuclides far from stability. This contribution summarizes some of the recent achievements and addresses future perspectives for measurements on even heavier elements.

Keywords: Superheavy elements; mass measurements; Penning traps; resonance ionization spectroscopy

Dedicated to: The memory of Professor Günter Herrmann.

References

  • 1.

    Sobiczewski, A., Gareev, F., Kalinkin, B.: Closed shells for Z>82 and N>126 in a diffuse potential well. Phys. Lett. 22, 500 (1966).CrossrefGoogle Scholar

  • 2.

    Meldner, H.: Predictions of new magic regions and masses for superheavy nuclei from calculations with realistic shell model single particle Hamiltonians. Ark. Fys. 36, 593 (1967).Google Scholar

  • 3.

    Nilsson, S. G., Tsang, C. F., Sobiczewski, A., Szymański, Z., Wycech, S., Gustafson, C., Lamm, I.-L., Möller, P., Nilsson, B.: On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1 (1969).CrossrefGoogle Scholar

  • 4.

    Mosel, U., Greiner, W.: On the stability of superheavy nuclei against fission. Z. Phys. 222, 261 (1969).CrossrefGoogle Scholar

  • 5.

    Öhrström, L., Reedijk, J.: Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016). Pure Appl. Chem. 88, 1225 (2016).CrossrefGoogle Scholar

  • 6.

    Oganessian, Yu. Ts., Utyonkov, V. K.: Superheavy element research. Rep. Prog. Phys. 78, 036301 (2015).CrossrefGoogle Scholar

  • 7.

    Münzenberg, G.: From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5 (2015).CrossrefGoogle Scholar

  • 8.

    Morita, K.: SHE research at RIKEN/GARIS. Nucl. Phys. A 944, 30 (2015).CrossrefGoogle Scholar

  • 9.

    Block, M., Ackermann, D., Blaum, K., Droese, C., Dworschak, M., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Hessberger, F. P., Hofmann, S., Ketelaer, J., Ketter, J., Kluge, H. J., Marx, G., Mazzocco, M., Novikov, Y. N., Plass, W. R., Popeko, A., Rahaman, S., Rodríguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobyev, G. K., Weber, C.: Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785 (2010).PubMedCrossrefGoogle Scholar

  • 10.

    Minaya Ramirez, E., Ackermann, D., Blaum, K., Block, M., Droese, C., Düllmann, Ch. E., Dworschak, M., Eibach, M., Eliseev, S., Haettner, E., Herfurth, F., Heflberger, F. P., Hofmann, S., Ketelaer, J., Marx, G., Mazzocco, M., Nesterenko, D., Novikov, Yu. N., Plafl, W. R., RodrÌguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Weber, C.: Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012).CrossrefPubMedGoogle Scholar

  • 11.

    Eibach, M., Beyer, T., Blaum, K., Block, M., Düllmann, Ch. E., Eberhardt, K., Grund, J., Nagy, Sz., Nitsche, H., Nörtershäuser, W., Renisch, D., Rykaczewski, K. P., Schneider, F., Smorra, C., Vieten, J., Wang, M., Wendt, K.: Direct high-precision mass measurements on Am-241, Am-243, Pu-244, and Cf-249. Phys. Rev. C 89, 064318 (2014).CrossrefGoogle Scholar

  • 12.

    Ito, Y., Schury, P., Wada, M., Arai, F., Haba, H., Hirayama, Y., Ishizawa, S., Kaji, D., Kimura, S., Koura, H., MacCormick, M., Miyatake, H., Moon, J. Y., Morimoto, K., Morita, K., Mukai, M., Murray, I., Niwase, T., Okada, K., Ozawa, A., Rosenbusch, M., Takamine, A., Tanaka, T., Watanabe, Y. X., Wollnik, H., Yamaki, S.: First direct mass measurements of Nuclides around Z=100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).CrossrefPubMedGoogle Scholar

  • 13.

    Sobiczewski, A., Pomorski, K.: Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58, 292 (2007).CrossrefGoogle Scholar

  • 14.

    Bender, M., Heenen, P.-H., Reinhard, P.-G.: Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003).CrossrefGoogle Scholar

  • 15.

    Giuliani, S. A., Matheson, Z., Nazarewicz, W., Olsen, E., Reinhard, P.-G., Sadhukhan, J., Schuetrumpf, B., Schunck, N., Schwerdtfeger, P.: Superheavy elements: oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019).CrossrefGoogle Scholar

  • 16.

    Goriely, S., Martínez Pinedo, G.: The production of transuranium elements by the r-process nucleosynthesis. Nucl. Phys. A 944, 30 (2015).Google Scholar

  • 17.

    Petermann, I., Langanke, K., Martínez-Pinedo, G., Panov, I. V., Reinhard, P.-G., Thielemann, F.-K.: Have superheavy elements been produced in nature? Eur. Phys. J. A 48, 122 (2012).Google Scholar

  • 18.

    Ter-Akopian, G. M., Dmitriev, S. N.: Searches for superheavy elements in nature: cosmic-ray nuclei; spontaneous fission. Nucl. Phys. A 944, 177 (2015).CrossrefGoogle Scholar

  • 19.

    Korschinek, G., Kutschera, W.: Mass spectrometric searches for superheavy elements in terrestrial matter. Nucl. Phys. A 944, 190 (2015).CrossrefGoogle Scholar

  • 20.

    Khuyagbaatar, J., Yakushev, A., Düllmann, Ch. E., Ackermann, D., Andersson, L. L., Asai, M., Block, M., Boll, R. A., Brand, H., Cox, D. M., Dasgupta, M., Derkx, X., Di Nitto, A., Eberhardt, K., Even, J., Evers, M., Fahlander, C., Forsberg, U., Gates, J. M., Gharibyan, N., Golubev, P., Gregorich, K. E., Hamilton, J. H., Hartmann, W., Herzberg, R. D., Heßberger, F. P., Hinde, D. J., Hoffmann, J., Hollinger, R., Hübner, A., Jäger, E., Kindler, B., Kratz, J. V., Krier, J., Kurz, N., Laatiaoui, M., Lahiri, S., Lang, R., Lommel, B., Maiti, M., Miernik, K., Minami, S., Mistry, A., Mokry, C., Nitsche, H., Omtvedt, J. P., Pang, G. K., Papadakis, P., Renisch, D., Roberto, J., Rudolph, D., Runke, J., Rykaczewski, K. P., Sarmiento, L. G., Schädel, M., Schausten, B., Semchenkov, A., Shaughnessy, D. A., Steinegger, P., Steiner, J., Tereshatov, E. E., Thörle-Pospiech, P., Tinschert, K., Torres De Heidenreich, T., Trautmann, N., Türler, A., Uusitalo, J., Ward, D. E., Wegrzecki, M., Wiehl, N., Van Cleve, S. M., Yakusheva, V.: 48Ca+249Bk fusion reaction leading to element Z=117: long-lived α-decaying 270Db and Discovery of 266Lr. Phys. Rev. Lett. 112, 172501 (2014).PubMedCrossrefGoogle Scholar

  • 21.

    Block, M.: Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps. Hyperfine Int. 238, 40 (2017).CrossrefGoogle Scholar

  • 22.

    Lunney, D., Pearson, J., Thibault, C.: Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021 (2003).CrossrefGoogle Scholar

  • 23.

    Greenlees, P. T., Rubert, J., Piot, J., Gall, B. J. P., Andersson, L. L., Asai, M., Asfari, Z., Cox, D. M., Dechery, F., Dorvaux, O., Grahn, T., Hauschild, K., Henning, G., Herzan, A., Herzberg, R.-D. Heßberger, F. P., Jakobsson, U., Jones, P., Julin, R., Juutinen, S., Ketelhut, S., Khoo, T.-L., Leino, M., Ljungvall, J., Lopez-Martens, A., Lozeva, R., Nieminen, P., Pakarinen, J., Papadakis, P., Parr, E., Peura, P., Rahkila, P., Rinta-Antila, S., Ruotsalainen, P., Sandzelius, M., Sarén, J., Scholey, C., Seweryniak, D., Sorri, J., Sulignano, B., Theisen, Ch., Uusitalo, J., Venhart, M.: Shell-structure and pairing Interaction in superheavy nuclei: rotational properties of the Z=104 nucleus 256Rf. Phys. Rev. Lett. 109, 012501 (2012).CrossrefPubMedGoogle Scholar

  • 24.

    Schuetrumpf, B., Nazarewicz, W., Reinhard, P.-G.: Central depression in nucleonic densities: trend analysis in the nuclear density functional theory approach. Phys. Rev. C 96, 024306 (2017).CrossrefGoogle Scholar

  • 25.

    Myers, W. D., Swiatecki, W. J.: Average nuclear properties. Ann. Phys. (N.Y.) 55, 395 (1969).CrossrefGoogle Scholar

  • 26.

    Möller, P., Nix, J., Myers, W. D., Swiatecki, W. J.: The coulomb redistribution energy as revealed by a refined study of nuclear masses. Nucl. Phys. A 536, 61 (1992).CrossrefGoogle Scholar

  • 27.

    Grasso, M., Gaudefroy, L., Khan, E., Nikšic, T., Piekarewicz, J., Sorlin, O., Van Giai, N., Vretenar, D.: Nuclear “bubble” structure in 34Si. Phys. Rev. C 79, 034318 (2009).CrossrefGoogle Scholar

  • 28.

    Duguet, T., Somà, V., Lecluse, S., Barbieri, C., Navrátil, P.: Ab initio calculation of the potential bubble nucleus 34Si. Phys. Rev. C 95, 034319 (2017).CrossrefGoogle Scholar

  • 29.

    Walker, P. M., Xu, F. R.: High-K isomerism in rotational nuclei. Phys. Scr. 91, 013010 (2016).CrossrefGoogle Scholar

  • 30.

    Dracoulis, G., Walker, P. M., Kondev, F.: Review of metastable states in heavy nuclei. Rep. Prog. Phys. 79, 076301 (2016)PubMedCrossrefGoogle Scholar

  • 31.

    Hofmann, S., Heßberger, F. P., Ackermann, D., Antalic, S.: The new isotope 270110 and its decay products 266Hs and 262Sg. Eur. Phys. J. A 10, 4 (2001).Google Scholar

  • 32.

    Fricke, B.: Superheavy Elements: A Prediction of their Chemical and Physical Properties, Springer Verlag, Berlin Heidelberg GmbH (1975) 21, p. 89.Google Scholar

  • 33.

    Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563 (1988).CrossrefGoogle Scholar

  • 34.

    Schwerdtfeger, P., Pašteka, L. F., Punnett, A., Bowman, P. O.: Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551 (2015).CrossrefGoogle Scholar

  • 35.

    Ephraim, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518 (2015).CrossrefGoogle Scholar

  • 36.

    Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).CrossrefGoogle Scholar

  • 37.

    Schädel, M.: Chemistry of superheavy elements. Angew. Chem. Int. Ed. 45, 368 (2006).CrossrefGoogle Scholar

  • 38.

    Nagame, Y., Kratz, J. V., Schädel, M.: Chemical studies of elements with Z≥104 in liquid phase. Nucl. Phys. A 944, 614 (2015).CrossrefGoogle Scholar

  • 39.

    Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z≥104 in gas phase. Nucl. Phys. A 944, 640 (2015).CrossrefGoogle Scholar

  • 40.

    Backe, H., Lauth, W., Block, M., Laatiaoui, M.: Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. A 944, 492 (2015).CrossrefGoogle Scholar

  • 41.

    Roberto, J., Alexander, C. W., Boll, R. A., Burns, J. D., Ezold, J. G., Felker, L. K., Hogle, S. L., Rykaczewski, K. P.: Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99 (2015).CrossrefGoogle Scholar

  • 42.

    Davids, C. N.: Recoil separators. Nucl. Instrum. Meth. B 204, 124 (2003).CrossrefGoogle Scholar

  • 43.

    Leino, M.: Gas-filled separators–an overview. Nucl. Instrum. Meth. B 204, 129 (2003).CrossrefGoogle Scholar

  • 44.

    Münzenberg, G., Faust, W., Hofmann, S., Armbruster, P., Güttner, K., Ewald, H.: The velocity filter SHIP, a separator of unslowed heavy ion fusion products. Nucl. Instrum. Meth. 161, 65 (1979).CrossrefGoogle Scholar

  • 45.

    Neumayr, J., Beck, L., Habs, D., Heinz, S., Szerypo, J., Thirolf, P. G., Varentsov, V., Voit, F., Ackermann, D., Beck, D., Block, M., Di, Z., Eliseev, S. A., Geissel, H., Herfurth, F., Heßberger, F. P., Hofmann, S., Kluge, H.-J., Mukherjee, M., Münzenberg, G., Petrick, M., Quint, W., Rahaman, S., Rauth, C., Rodríguez, D., Scheidenberger, C., Sikler, G., Wang, Z., Weber, C., Plaß, W. R., Breitenfeldt, M., Chaudhurid, A., Marx, G., Schweikhard, L., Dodonov, A. F., Novikov, Y., Suhonen, M.: The ion-catcher device for SHIPTRAP. Nucl. Instrum. Meth. B 244, 489 (2006).CrossrefGoogle Scholar

  • 46.

    Lautenschläger, F., Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Clark, A., Droese, C., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Kaleja, O., Khuyagbaatar, J., Kunz, P., Mistry, A. K., Laatiaoui, M., Lauth, W., Raeder, S., Walther, Th., Wraith, C.: Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP. Nucl. Instrum. Meth. B 383, 115 (2016).CrossrefGoogle Scholar

  • 47.

    v.d. Wense, L., Seiferle, B., Laatiaoui, M., Thirolf, P. G.: Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell. Eur. Phys. J. A 51, 29 (2015).CrossrefGoogle Scholar

  • 48.

    Droese, C., Eliseev, S., Blaum, K., Block, M., Herfurth, F., Laatiaoui, M., Lautenschläger, F., Minaya Ramirez, E., Schweikhar, L., Simon, V. V., Thirolff, P. G.: The cryogenic gas stopping cell of SHIPTRAP. Nucl. Instrum. Meth. B 338, 126 (2014).CrossrefGoogle Scholar

  • 49.

    Laatiaoui, M., Lauth, W., Backe, H., Block, M., Ackermann, D., Cheal, B., Chhetri, P., Düllmann, C. E., van Duppen, P., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Lautenschläger, F., Mistry, A. K., Raeder, S., Ramirez, E. M., Walther, T., Wraith, C., Yakushev, A.: Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495 (2016).PubMedCrossrefGoogle Scholar

  • 50.

    Wollnik, H.: History of mass measurements in time-of-flight mass analyzers. Int. J. Mass Spectrom. 349, 38 (2013).Google Scholar

  • 51.

    Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006).CrossrefGoogle Scholar

  • 52.

    Kluge, H.-J.: Penning trap mass spectrometry of radionuclides. Int. J. Mass Spectrom. 349, 26 (2013).Google Scholar

  • 53.

    Wienholtz, F., Beck, D., Blaum, K., Borgmann, Ch., Breitenfeldt, M., Cakirli, R. B., George, S., Herfurth, F., Holt, J. D., Kowalska, M., Kreim, S., Lunney, D., Manea, V., Menéndez, J., Neidherr, D., Rosenbusch, M., Schweikhard, L., Schwenk, A., Simonis, J., Stanja, J., Wolf, R. N., Zuber, K.: Masses of exotic calcium isotopes pin down nuclear forces. Nature 498, 346 (2013).PubMedCrossrefGoogle Scholar

  • 54.

    Wolf, R., Beck, D., Blaum, K., Böhm, Ch., Borgmann, Ch., Breitenfeldt, M., Chamel, N., Goriely, S., Herfurth, F., Kowalska, M., Kreim, S., Lunney, D., Manea, V., Minaya Ramirez, E., Naimi, S., Neidherr, D., Rosenbusch, M., Schweikhard, L., Stanja, J., Wienholtz, F., Zuber, K.: Plumbing neutron stars to new depths with the binding energy of the exotic nuclide 82Zn. Phys. Rev. Lett. 110, 041101 (2013).PubMedCrossrefGoogle Scholar

  • 55.

    Schury, P., Wada, M., Ito, Y., Naimi, S., Sonoda, T., Mita, H., Takamine, A., Okada, K., Wollnik, H., Chon, S., Haba, H., Kaji, D., Koura, H., Miyatake, H., Morimoto, K., Morita, K., Ozawa, A.: A multi-reflection time-of-flight mass spectrograph for short-lived and super-heavy nuclei. Nucl. Instrum. Meth. B 317, 537 (2013).CrossrefGoogle Scholar

  • 56.

    Plaß, W., Dickel, T., Purushothaman, S., Dendooven, P., Geissel, H., Ebert, J., Haettner, E., Jesch, C., Ranjan, M., Reiter, M. P., Weick, H., Amjad, F., Ayet, S., Diwisch, M., Estrade, A., Farinon, F., Greiner, F., Kalantar-Nayestanaki, N., Knöbel, R., Kurcewicz, J., Lang, J., Moore, I., Mukha, I., Nociforo, C., Petrick, M., Pfützner, M., Pietri, S., Prochazka, A., Rink, A.-K., Rinta-Antila, S., Schäfer, D., Scheidenberger, C., Takechi, M., Tanaka, Y. K., Winfield, J. S., Yavor, M. I.: The FRS ion catcher – a facility for high-precision experiments with stopped projectile and fission fragments. Nucl. Instrum. Meth. B 317, 457 (2013).CrossrefGoogle Scholar

  • 57.

    Brown, L. S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986).CrossrefGoogle Scholar

  • 58.

    Kretzschmar, M.: Particle motion in a Penning trap. Eur. J. Phys. 12, 240 (1991).CrossrefGoogle Scholar

  • 59.

    Myers, E. G.: The most precise atomic mass measurements in Penning traps. Int. J. Mass Spectrom. 349, 107 (2013).Google Scholar

  • 60.

    Bollen, G., Davies, D., Facina, M., Huikari, J., Kwan, E., Lofy, P. A., Morrissey, D. J., Prinke, A., Ringle, R., Savory, J., Schury, P., Schwarz, S., Sumithrarachchi, C., Sun, T., Weissman, L.: Experiments with thermalized rare isotope beams from projectile fragmentation: a precision mass measurement of the superallowed β emitter 38Ca. Phys. Rev. Lett. 96, 152501 (2006).CrossrefPubMedGoogle Scholar

  • 61.

    Smith, M., Brodeur, M., Brunner, T., Ettenauer, S., Lapierre, A., Ringle, R., Ryjkov, V. L., Ames, F., Bricault, P., Drake, G. W., Delheij, P., Lunney, D., Sarazin, F., Dilling, J.: First Penning-trap mass measurement of the exotic halo nucleus 11Li. Phys. Rev. Lett. 101, 202501 (2008).PubMedCrossrefGoogle Scholar

  • 62.

    König, M., Bollen, G., Kluge, H.-J., Otto, T., Szerypo, J.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).CrossrefGoogle Scholar

  • 63.

    Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., Goncharov, M., Höcker, M., Ketter, J., Minaya Ramirez, E., Nesterenko, D. A., Novikov, Yu. N., Schweikhard, L.: A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114, 107 (2014).CrossrefGoogle Scholar

  • 64.

    Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D. A., Novikov, Y. N., Schweikhard, L.: Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013).PubMedCrossrefGoogle Scholar

  • 65.

    Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, Ch. E., Enss, C., Filianin, P. E., Gastaldo, L., Goncharov, M., Köster, U., Lautenschläger, F., Novikov, Y. N., Rischka, A., Schüssler, R. X., Schweikhard, L., Türler, A.: Direct measurement of the mass difference of 163Ho and 163Dy solves the Q-value puzzle for the neutrino mass determination. Phys. Rev. Lett. 115, 062501 (2015).CrossrefGoogle Scholar

  • 66.

    Vilen, M., Kelly, J. M., Kankainen, A., Brodeur, M., Aprahamian, A., Canete, L., Eronen, T., Jokinen, A., Kuta, T., Moore, I. D., Mumpower, M. R., Nesterenko, D. A., Penttilä, H., Pohjalainen, I., Porter, W. S., Rinta-Antila, S., Surman, R., Voss, A., Äystö, J.: Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP: reduced neutron pairing and implications for r-process calculations. Phys. Rev. Lett. 115, 262701 (2018).Google Scholar

  • 67.

    Orford, R., Vassh, N., Clark, J. A., McLaughlin, G. C., Mumpower, M. R., Savard, G., Surman, R., Aprahamian, A., Buchinger, F., Burkey, M. T., Gorelov, D. A., Hirsh, T. Y., Klimes, J. W., Morgan, G. E., Nystrom, A., Sharma, K. S.: Precision mass measurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 115, 262702 (2018).Google Scholar

  • 68.

    Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Int. J. Mass Spectrom. 349, 94 (2013).Google Scholar

  • 69.

    Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Nucl. Phys. A 944, 471 (2015).CrossrefGoogle Scholar

  • 70.

    Ketelaer, J., Krämer, J., Beck, D., Blaum, K., Block, M., Eberhardt, K., Eitel, G., Ferrer, R., Geppert, C., George, S., Herfurth, F., Ketter, J., Nagy, Sz., Neidherr, D., Neugart, R., Nörtershäuser, W., Repp, J., Smorra, C., Trautmann, N., Weber, C.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instrum. Meth. A 594 162 (2008).CrossrefGoogle Scholar

  • 71.

    Dworschak, M., Block, M., Ackermann, D., Audi, G., Blaum, K., Droese, C., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Heßberger, F. P., Hofmann, S., Ketelaer, J., Ketter, J., Kluge, H.-J., Marx, G., Mazzocco, M., Novikov, Yu. N., Plaß, W. R., Popeko, A., Rahaman, S., Rodríguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobyev, G. K., Wang, M., Weber, C.: Penning trap mass measurements on nobelium isotopes. Phys. Rev. C 81, 064312 (2010).CrossrefGoogle Scholar

  • 72.

    Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., Xu, X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2016).Google Scholar

  • 73.

    Campbell, P., Moore, I.-D., Pearson, M.-D.: Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016).CrossrefGoogle Scholar

  • 74.

    Backe, H., Hies, M., Kunz, H., Lauth, W., Curtze, O., Schwamb, P., Sewtz, M., Theobald, W., Zahn, R., Eberhardt, K., Trautmann, N., Habs, D., Repnow, R., Fricke, B.: Isotope shift measurements for superdeformed fission isomeric states. Phys. Rev. Lett. 80, 920 (1998).CrossrefGoogle Scholar

  • 75.

    Chhetri, P. K., Ackermann, D., Backe, H., Block, M., Cheal, B., Droese, C., Düllmann, Ch. E., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Lecesne, N., Lens, L., Ramirez, E. M., Mistry, A. K., Raeder, S., Van Duppen, P., Walther, Th., Yakushev, A., Zhang, Z.: Precision measurement of the first ionization potential of nobelium. Phys. Rev. Lett. 120, 263003 (2018).CrossrefPubMedGoogle Scholar

  • 76.

    Raeder, S., Ackermann, D., Backe, H., Beerwerth, R., Berengut, J. C., Block, M., Borschevsky, A., Cheal, B., Chhetri, P., Düllmann, Ch. E., Dzuba, V. A., Eliav, E., Even, J., Ferrer, R., Flambaum, V. V., Fritzsche, S., Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaldor, U., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Mistry, A. K., Minaya Ramirez, E., Nazarewicz, W., Porsev, S. G., Safronova, M. S., Safronova, U. I., Schuetrumpf, B., Van Duppen, P., Walther, T., Wraith, C., Yakushev, A.: Probing sizes and shapes of nobelium isotopes by laser spectroscopy. Phys. Rev. Lett. 120, 232503 (2018).PubMedCrossrefGoogle Scholar

  • 77.

    Borschevsky, A., Eliav, E., Vilkas, M. J., Ishikawa, Y., Kaldor, U.: Predicted spectrum of atomic nobelium. Phys. Rev. A 75, 042514 (2007).CrossrefGoogle Scholar

  • 78.

    Porsev, S. G., Safronova, M. S., Safronova, U. I., Dzuba, V. A., Flambaum, V. V.: Nobelium energy levels and hyperfine-structure constants. Phys. Rev. A 98, 052512 (2018).CrossrefGoogle Scholar

  • 79.

    Ferrer, R., Barzakh, A., Bastin, B., Beerwerth, R., Block, M., Creemers, P., Grawe, H., de Groote, R., Delahaye, P., Fléchard, X., Franchoo, S., Fritzsche, S., Gaffney, L. P., Ghys, L., Gins, W., Granados, C., Heinke, R., Hijazi, L., Huyse, M., Kron, T., Kudryavtsev, Yu., Laatiaoui, M., Lecesne, N., Loiselet, M., Lutton, F., Moore, I. D., Martínez, Y., Mogilevskiy, E., Naubereit, P., Piot, J., Raeder, S., Rothe, S., Savajols, H., Sels, S., Sonnenschein, V., Thomas, J.-C., Traykov, E., Van Beveren, C., Van den Bergh, P., Van Duppen, P., Wendt, K., Zadvornaya, A.: Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 8, Article no. 14520 (2017).PubMedGoogle Scholar

  • 80.

    Gates, J. M., Pang, G. K., Pore, J. L., Gregorich, K. E., Kwarsick, J. T., Savard, G., Esker, N. E., Kireeff Covo, M., Mogannam, M. J., Batchelder, J. C., Bleuel, D. L., Clark, R. M., Crawford, H. L., Fallon, P., Hubbard, K. K., Hurst, A. M., Kolaja, I. T., Macchiavelli, A. O., Morse, C., Orford, R., Phair, L., Stoyer, M. A.: First direct measurements of superheavy-element mass numbers. Phys. Rev. Lett. 121, 222501 (2018).PubMedCrossrefGoogle Scholar

About the article

Received: 2018-12-31

Accepted: 2019-03-14

Published Online: 2019-04-18

Published in Print: 2019-07-26


Citation Information: Radiochimica Acta, Volume 107, Issue 7, Pages 603–613, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2019-0002.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christoph E. Düllmann
Radiochimica Acta, 2019, Volume 107, Number 7, Page 587

Comments (0)

Please log in or register to comment.
Log in