Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

See all formats and pricing
More options …
Volume 107, Issue 7


Measurement of the laser resonance ionization efficiency for lutetium

Vadim Maratovich Gadelshin
  • Corresponding author
  • AG LARISSA, Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
  • Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reinhard Heinke / Tom Kieck / Tobias Kron / Pascal Naubereit / Frank Rösch / Thierry Stora / Dominik Studer / Klaus Wendt
Published Online: 2019-05-31 | DOI: https://doi.org/10.1515/ract-2019-3118


The development of a highly efficient resonance ionization scheme for lutetium is presented. A laser ion source, based on the all-solid-state Titanium:sapphire laser system, was used at the 30 keV RISIKO off-line mass separator to characterize different possible optical excitation schemes in respect to their ionization efficiency. The developed laser resonance ionization scheme can be directly applied to the use at radioactive ion beam facilities, e. g. at the CERN-MEDICIS facility, for large-scale production of medical radioisotopes.

Keywords: Isotope separation; laser resonance ionization; Titanium:sapphire; lutetium; nuclear medicine

Dedicated to: The memory of Professor Günter Herrmann.


  • 1.

    dos Santos Augusto, R. M., Buehler, L., Lawson, Z., Marzari, S., Stachura, M., Stora, T.: CERN-MEDICIS collaboration: CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility. Appl. Sci. 4, 265 (2014).CrossrefGoogle Scholar

  • 2.

    Kugler, E.: The ISOLDE facility. Hyperfine Interact. 129, 23 (2000).CrossrefGoogle Scholar

  • 3.

    Catherall, R., Andreazza, W., Breitenfeldt, M., Dorsival, A., Focker, G. J., Gharsa, T. P., Giles, T. J., Grenard, J.-L., Locci, F., Martins, P., Marzari, S., Schipper, J., Shornikov, A., Stora, T.: The ISOLDE facility. J. Phys. G Nucl. Part. Phys. 44, 094002 (2017).CrossrefGoogle Scholar

  • 4.

    Fedosseev, V., Chrysalidis, K., Day Goodacre, T., Marsh, B., Rothe, S., Seiffert, C., Wendt, K.: Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE. J. Phys. G Nucl. Part. Phys. 44(8), 084006 (2017).CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Letokhov, V. S.: Laser Photoionization Spectroscopy. Academic Press, Orlando (1987), p. 353.Google Scholar

  • 6.

    Banerjee, S., Pillai, M. R. A., Knapp, F. F.: Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem. Rev. 115, 2934 (2015).CrossrefPubMedWeb of ScienceGoogle Scholar

  • 7.

    Tishchenko, V. K., Petriev, V. M., Skvortsov, V. G.: Radiopharmaceuticals based on polyaminophosphonic acids labeled with α-, β-, and γ-emitting radionuclides (Review). Pharm. Chem. J. 49(7), 3 (2015).Web of ScienceGoogle Scholar

  • 8.

    Ljungberg, M., Celler, A., Konijnenberg, M. W., Eckerman, K. F., Dewaraja, Y. K., Sjögreen-Gleisner, K.: MIRD Pamphlet No. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J. Nucl. Med. 57, 151 (2016).CrossrefPubMedGoogle Scholar

  • 9.

    Gadelshin, V. M., Cocolios, T., Fedosseev, V., Heinke, R., Kieck, T., Marsh, B., Naubereit, P., Rothe, S., Stora, T., Studer, D., Van Duppen, P., Wendt, K.: Laser resonance ionization spectroscopy on lutetium for the MEDICIS project. Hyperfine Interact. 238, 28 (2017).CrossrefGoogle Scholar

  • 10.

    D’yachkov, A. B., Firsov, V. A., Gorkunov, A. A., Labozin, A. V., Mironov, S. M., Panchenko, V. Y., Semenov, A. N., Shatalova, G. G., Tsvetkov, G. O.: Photoionization spectroscopy for laser extraction of the radioactive isotope Lu-177. Appl. Phys. B 121(4), 425 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Zimmer, K.: Konzeption, aufbau und test der ionenoptik des RISIKO-Massenseparators (Diploma thesis). Johannes Gutenberg University Mainz, Mainz, Germany (1990).Google Scholar

  • 12.

    Kron, T., Liu, Y., Richter, S., Schneider, F., Wendt, K.: High efficiency resonance ionization of palladium with Ti:sapphire lasers. J. Phys. B At. Mol. Opt. 49(18), 185003 (2016).CrossrefGoogle Scholar

  • 13.

    Kieck T., Biebricher S., Düllmann C., Wendt K.: Optimizaion of a laser ion source for Ho-163 isotope separation. Rev. Sci. Instrum. 90(5), 053304 (2019). https://aip.scitation.org/doi/10.1063/1.5081094.Crossref

  • 14.

    Schneider, F., Chrysalidis, K., Dorrer, H., Düllmann, Ch. E., Eberhardt, E., Haas, R., Kieck, T., Mokry, C., Naubereit, P., Schmidt, S., Wendt, K.: Resonance ionization of holmium for ion implantation in microcalorimeters. Nucl. Instrum. Methods B 376, 388 (2016).CrossrefGoogle Scholar

  • 15.

    Lutetium AAS Standard Solution [Online]. Available: https://www.alfa.com/de/catalog/089886/ [2018, December].

  • 16.

    Mattolat, C., Rothe, S., Schwellnus, F., Gottwald, T., Raeder, S., Wendt, K.: An all-solid-state high repetition rate Titanium:sapphire laser system for resonance ionization laser ion sources. AIP Conf. Proc. 1104, 114 (2009).Google Scholar

  • 17.

    Rothe, S., Marsh, B., Mattolat, C., Fedosseev, V. N., Wendt, K.: A complementary laser system for ISOLDE RILIS. J. Phys. Conf. Ser. 312, 052020 (2011).CrossrefGoogle Scholar

  • 18.

    Bekov, G. I., Vidolova-Angelova, E. P.: Optimal scheme for multistage photoionization of lutetium atoms by laser radiation. Sov. J. Quant. Electron. 11(1), 137 (1981).CrossrefGoogle Scholar

  • 19.

    Kurucz, R. L., Bell, B.: Atomic Line Data. Smithsonian Astrophysical Observatory, Cambridge, MA (1995), Kurucz CD-ROM No. 23.Google Scholar

  • 20.

    Ralchenko, Y., Kramida, A. E., Reader, J., NIST ASD Team: NIST Atomic Spectra Database (version 5) [Online]. Available: https://www.nist.gov/pml/atomic-spectra-database [2016, September]. National Institute of Standards and Technology, Gaithersburg, MD.

  • 21.

    Miller, C. M., Nogar, N. S.: Autoionizing and high-lying Rydberg states of lutetium atoms. AIP Conf. Proc. 90, 90 (1982).Google Scholar

  • 22.

    Alkhazov, G. D., Batist, L. Kh., Bykov, A. A., Vitman, V. D., Letokhov, V. S., Mishin, V. I., Panteleyev, V. N., Sekatsky, S. K., Fedoseyev, V. N.: Application of a high efficiency selective laser ion source at the IRIS facility. Nucl. Instrum. Meth. A. 306(1–2), 400 (1991).CrossrefGoogle Scholar

  • 23.

    Trautmann, N., Wendt, K.: Fast chemical separations and laser mass spectrometry – tools for nuclear research. Radiochim. Acta 100, 675 (2012).Web of ScienceCrossrefGoogle Scholar

  • 24.

    Rösch, F.: The basics of nuclear chemistry and radiochemistry: an introduction to nuclear transformations and radioactive emissions. In: L. S. Lewis, A. D. Windhorst, B. M. Zeglis (Eds.), Radiopharmaceutical Chemistry (2019), Springer International Publishing, Cham, Switzerland, p. 27.Google Scholar

About the article

Received: 2019-02-10

Accepted: 2019-04-29

Published Online: 2019-05-31

Published in Print: 2019-07-26

Citation Information: Radiochimica Acta, Volume 107, Issue 7, Pages 653–661, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2019-3118.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in