Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 7

Issues

The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education

Klaus Eberhardt / Christopher Geppert
Published Online: 2019-04-29 | DOI: https://doi.org/10.1515/ract-2019-3127

Abstract

The TRIGA Mark II-reactor at the Johannes Gutenberg University Mainz (JGU) is one of three research reactors in Germany. The TRIGA Mainz became first critical on August 3rd, 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth and a pulse length of 30 ms. The TRIGA Mainz is equipped with a central thimble, a rotary specimen rack, three pneumatic transfer systems, four beam tubes, and a graphite thermal column. The TRIGA Mainz is intensively used both for basic and applied research in nuclear chemistry and nuclear physics. Two sources for ultra-cold neutrons (UCN) are operational at two beam ports. At a third beam port a Penning-Trap for highly precise mass measurements of exotic nuclides is installed. Education and training is another main field of activity. Here, various courses in nuclear and radiochemistry, reactor operation and reactor physics are held for scientists, advanced students, engineers, and technicians utilizing the TRIGA Mainz reactor.

Keywords: Research reactor; gas-jet transport system; fast chemical separations; ultra-cold neutrons; Penning-trap mass spectrometry; neutron activation; education and training in nuclear chemistry

Dedicated to the memory of Professor Günter Herrmann.

References

  • 1.

    Dyson, F.: The little red schoolhouse. In: Disturbing the Universe, Basic Books, New York (1979), p. 94.Google Scholar

  • 2.

    Koutz, S. L., Taylor, T., McReynolds, A. W., Dyson, F., Stone, R. S., Sleeper, H. B., Duffield, R. B.: Design of a 10 kW reactor for isotope production, research and training purposes. In: Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy, Vol. 10 (1958), United Nations (Ed.), Geneva, p. 282.Google Scholar

  • 3.

    Stone, R. S., Sleeper, H. P., Stahl, R. A., West, G.: Transient behaviour of TRIGA, a zirconium-hydride, water – moderated reactor. Nucl. Sci. Eng. 6, 255 (1959).CrossrefGoogle Scholar

  • 4.

    Merten, U., Dijkstra, L. J., Zimmermann, F. D., Hatcher, A. P., LaGrange, L. D.: The preparation and properties of zirconium-uranium-hydrogen alloys. In: Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy, Vol. 6 (1958), United Nations (Ed.), Geneva, p. 111.Google Scholar

  • 5.

    McReynolds, A. W., Nelkin, M. S., Rosenbluth, M. N., Whittemore, W. L.: Neutron thermalization by chemically-bound hydrogen and carbon. In: Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy, Vol. 16 (1958), United Nations (Ed.), Geneva, p. 297.Google Scholar

  • 6.

    Eberhardt, K., Trautmann, N.: Neutron activation analysis at the TRIGA Mark II research reactor of the University of Mainz. In: IAEA Technical Reports Series 455, 537 (2007).Google Scholar

  • 7.

    Stender, E., Herrmann, G., Trautmann, N.: Use of alkali halide clusters in a gas-jet recoil transport system. Radiochem. Radioanal. Lett. 42, 291 (1980).Google Scholar

  • 8.

    Eibach, M., Beyer, T., Blaum, K., Block, M., Eberhardt, K., Herfurth, F., Geppert, C., Ketelaer, J., Ketter, J., Krämer, J., Krieger, A., Knuth, K., Nagy, Sz., Nörtershäuser, W., Smorra, C.: Transport of fission products with a helium gas-jet at TRIGA-SPEC. Nucl. Instrum. Methods A613, 226 (2010).Google Scholar

  • 9.

    Menke, H., Trautmann, N., Krebs, W. J.: Irradiations by means of reactor pulses. Kerntechnik 17, 281 (1975).Google Scholar

  • 10.

    Herrmann, G., Trautmann, N.: Rapid chemical methods for identification and study of short-lived nuclides. Annu. Rev. Nucl. Part. Sci. 32, 117 (1982).CrossrefGoogle Scholar

  • 11.

    Türler, A., Gregorich, K. E.: Experimental techniques. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of Superheavy Elements (2014), 2nd ed., Springer, Heidelberg, p. 261.Google Scholar

  • 12.

    Altzitouglou, T., Rogowski, J., Skålberg, M., Alstad, J., Herrmann, G., Kaffrell, N., Skarnemark, G., Talbert, W., Trautmann, N.: Fast chemical separation of technetium from fission products and decay studies of 109Tc and 110Tc. Radiochim. Acta 51, 145 (1990).Google Scholar

  • 13.

    Schoedder, S., Lhersonneau, G., Wöhr, A., Skarnemark, G., Alstad, J., Nähler, A., Eberhardt, K., Äystö, J., Trautmann, N., Kratz, K.-L.: Level lifetimes in neutron rich Ru isotopes. Z. Phys. A352, 237 (1995).Google Scholar

  • 14.

    Lhersonneau, G., Pfeiffer, B., Alstad, J., Dendooven, P., Eberhardt, K., Hankonen, S., Klöckl, I., Kratz, K.-L., Malmbeck, R., Omtvedt, J. P., Penttila, H., Schoedder, S., Skarnemark, G., Trautmann, N., Aystö, J.: Shape coexistence near the double-midshell nucleus 111Rh. Eur. Phys. J. A1, 285 (1998).Google Scholar

  • 15.

    Persson, H., Skarnemark, G., Skålberg, M., Alstad, J., Liljenzin, J. O., Bauer, G., Haberberger, F., Kaffrell, N., Rogowski, J., Trautmann, N.: SISAK 3 – an improved system for rapid radiochemical separations by solvent extraction. Radiochim. Acta 48, 177 (1989).Google Scholar

  • 16.

    Alstad, J., Skarnemark, G., Haberberger, F., Herrmann, G., Nähler, A., Pense-Maskow, M., Trautmann, N.: Development of new centrifuges for fast solvent extraction of transactinide elements. J. Radioanal. Nucl. Chem. 189, 133 (1995).CrossrefGoogle Scholar

  • 17.

    Kratz, J. V.: Development of nuclear chemistry at Mainz and Darmstadt. Radiochim. Acta 107, 1 (2019).Web of ScienceGoogle Scholar

  • 18.

    Hild, D., Eberhardt, K., Even, J., Kratz, J. V., Wiehl, N., Löb, P., Werner, B., Hofmann, C.: MicroSISAK: continuous liquid-liquid extractions of radionuclides at ≥0.2 mL/min. Radiochim. Acta 101, 681 (2013).Web of ScienceGoogle Scholar

  • 19.

    Frei, A., Sobolev, Yu., Altarev, I., Eberhardt, K., Gschrey, A., Gutsmiedl, E., Hackl, R., Hampel, G., Hartmann, F. J., Heil, W., Kratz, J. V., Lauer, T. H., Lizon Aguilar, A., Mäller, A. R., Paul, S., Pokotilovski, Y. U., Schmid, W., Tassini, L., Tortorella, D., Trautmann, N., Trinks, U., Wiehl, N.: First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A34, 119 (2007).Web of ScienceGoogle Scholar

  • 20.

    Karch, J., Sobolev, Yu., Beck, M., Eberhardt, K., Hampel, G., Heil, W., Kieser, R., Reich, T., Trautmann, N., Ziegner, M.: Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A50, 78 (2014).Web of ScienceGoogle Scholar

  • 21.

    Lauss, B., Bison, G., Daum, M., Ries, D., Schmidt-Wellenburg, P., Zsigmund, G., Brenner, T., Geltenbort, P., Jenke, T., Zimmer, O., Beck, M., Heil, W., Kahlenberg, J., Karch, J., Ross, K., Eberhardt, K., Geppert, C., Karpuk, S., Reich, T., Siemensen, C., Sobolev, Yu., Trautmann, N.: Comparison of ultracold neutron sources for fundamental physics measurements. Phys. Rev. C95, 045503 (2017).Web of ScienceGoogle Scholar

  • 22.

    Kahlenberg, J., Ries, D., Ross, K. U., Siemensen, C., Beck, M., Geppert, C., Heil, W., Hild, N., Karch, J., Karpuk, S., Kories, F., Kretschmer, M., Lauss, B., Reich, T., Sobolev, Yu., Trautmann, N.: Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A53, 226 (2017).Web of ScienceGoogle Scholar

  • 23.

    Ketelaer, J., Krämer, J., Beck, D., Blaum, K., Block, M., Eberhardt, K., Eitel, G., Ferrer, J., Geppert, C., George, S., Herfurth, F., Ketter, J., Nagy, Sz., Neidherr, D., Neugart, R., Nörtershäuser, W., Repp, J., Smorra, C., Trautmann, N., Weber, C.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instr. Meth. A594, 162 (2008).Google Scholar

  • 24.

    Grund, J., Düllmann, Ch. E., Eberhardt, K., Nagy, Sz., van der Laar, J., Renisch, D., Schneider, F.: Implementation of an aerodynamic lens for TRIGA-SPEC. Nucl. Instrum. Meth. Phys. Res. B376, 225 (2016).Google Scholar

  • 25.

    Eibach, M., Beyer, T., Blaum, K., Block, M., Düllmann, Ch. E., Eberhardt, K., Grund, J., Nagy, Sz., Nitsche, H., Nörtershäuser, W., Renisch, D., Rykaczewski, K. P., Schneider, F., Smorra, C., Vieten, J., Wang, M., Wendt, K.: Direct high-precision mass measurements on Am-241, Am-243, Pu-244, and Cf-249. Phys. Rev. C89, 064318 (2014).Web of ScienceGoogle Scholar

  • 26.

    Mauerhofer, E.: Improvement in the counting statistics and in the limit of detection with Compton suppression spectrometers – a contribution to instrumental neutron activation analysis. Appl. Rad. Isotopes 47, 649 (1996).CrossrefGoogle Scholar

  • 27.

    Eberhardt, K., Trautmann, N.: Neutron activation analysis at the TRIGA Mark II research reactor of the University of Mainz. In: Utilization Related Design Features of Research Reactors – A Compendium, International Atomic Energy Agency Technical Report Series No. 455, Vienna (2007).Google Scholar

  • 28.

    Hampel, J., Boldt, F. M., Gerstenberg, H., Hampel, G., Kratz, J. V., Reber, N., Wiehl, N.: Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis. Appl. Rad. Isotopes 69, 1365 (2011).CrossrefGoogle Scholar

  • 29.

    Conejos-Sanchez, I., Hampel, G., Zauner, S., Riederer, J.: Reverse paintings on glass – a new approach for dating and localization. Appl. Rad. Isotopes 67, 2113 (2009).CrossrefGoogle Scholar

  • 30.

    Stieghorst, C., Hampel, G., Zauner, S., Plonka-Spehr, C.: Archäometrie mittels instrumenteller Neutronenaktivierungsanalyse am Forschungsreaktor TRIGA Mainz. METALLA, Sonderheft 5: Archäometrie und Denkmalpflege (2012).Google Scholar

  • 31.

    Gerick, D.: Studies of the non-ionizing radiation hardness and temperature dependence of silicon photomultipliers for the LHCb Tracker upgrade. Master thesis, University of Heidelberg (2014).Google Scholar

  • 32.

    Heftrich, T., Bichler, M., Dressler, R., Eberhardt, K., Endres, A., Glorius, J., Göbel, K., Hampel, G., Heftrich, M., Käppeler, F., Lederer, C., Mikorski, M., Plag, R., Reifarth, R., Stieghorst, C., Schmidt, S., Schumann, D., Slavkovská, Z., Sonnabend, K., Wallner, A., Weigand, M., Wiehl, N., Zauner, S.: Thermal neutron capture cross section of the radioactive isotope 60Fe. Phys. Rev. C92, 015806 (2015).Google Scholar

  • 33.

    Weigand, M., Heftrich, T., Düllmann, Ch. E., Eberhardt, K., Fiebiger, S., Glorius, J., Göbel, K., Haas, R., Langer, C., Lohse, S., Reifarth, R., Renisch, D., Wolf, C.: 66.7 keV γ-line intensity of 171Tm determined via neutron activation. Phys. Rev. C97, 035803 (2018).Google Scholar

About the article

Received: 2019-02-21

Accepted: 2019-04-02

Published Online: 2019-04-29

Published in Print: 2019-07-26


Citation Information: Radiochimica Acta, Volume 107, Issue 7, Pages 535–546, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2019-3127.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christoph E. Düllmann
Radiochimica Acta, 2019, Volume 107, Number 7, Page 587

Comments (0)

Please log in or register to comment.
Log in