Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.

IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

See all formats and pricing
More options …
Volume 107, Issue 8


Irradiated rubber composite with nano and micro fillers for mining rock application

Hanan M. Eyssa
  • Corresponding author
  • Radiation Chemistry Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wael S. Mohamed / Mai M. El-Zayat
  • Radiation Chemistry Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-13 | DOI: https://doi.org/10.1515/ract-2018-2989


In this work, nanosilica and micro carbon black (CB) as a fillers were used to improve the properties of styrene butadiene rubber/natural rubber blends (SBR/NR) crosslinked by γ radiation. Nanosilica was prepared from silica sand and used as eco-friendly material. These composites were characterized by field emission scanning electron microscopy (FESEM) and the measurements of the physic-mechanical and thermal properties were measured. Field emission scanning electron microscopy showed that the composites reinforced by nanosilica and the measurements of the CB are uniformly dispersed in the blends matrix. The results showed that the physico-mechanical and thermal properties were improved indicating a good interaction between the fillers and rubber matrix. The volume fraction measurements confirmed the formation of crosslinking network structure. Meanwhile, the reinforcement of SBR/NR blend loaded with nanosilica showed improved mechanical than blend loaded with both the nanosilica/carbon black and the CB alone. The highest enhancement was obtained for the three fillers by using a concentration of 35 phr at a dose of 150 kGy of γ-irradiation. Thermogravimetric analysis (TGA) indicated that the thermal stability of SBR/NR blend reinforced by nanosilica is higher than those blends reinforced with combined filler the silica. It was also found that the irradiated SBR/NR nanocomposites were more stable than the un-irradiated ones.

Keywords: Crude oil; γ irradiation; mechanical and physical properties; nano-silica sand; carbon black; SBR/NR


  • 1.

    Adhikari, B., Ghosh, A. K., Maiti, S.: Developments in carbon black for rubber reinforcement. J. Polym. Mater. 17, 101 (2000).Google Scholar

  • 2.

    Maiti, M., Bhattacharya, M., Bhowmick, A. K.: Elastomer nanocomposites. Rubber Chem. Technol. J. 81, 384 (2008).CrossrefGoogle Scholar

  • 3.

    Brinke, J. W. T., Debnath, S. C., Reuvekamp, L. A. E. M., Noordermeer, J. W. M.: Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos. Sci. Technol. 63(8), 1165 (2003).CrossrefGoogle Scholar

  • 4.

    Arroyo, M., Lopez-Manchadoa, M. A., Valentina, J. L., Carretero, J.: Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos. Sci. Technol. 67(7–8), 1330 (2007).CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Gunasekaran, S., Natarajan, R. K., Kala, A.: FTIR spectra and mechanical strength analysis of some selected rubber derivatives. Spectrochim. Acta 68(2), 323 (2007).CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Stelandre, L. L., Bomal, Y., Flandin, L., Labarre, D.: Dynamic mechanical properties of precipitated silica filled rubber: influence of morphology and coupling agent. Rubber Chem. Technol. J. 76, 145 (2003).CrossrefGoogle Scholar

  • 7.

    Pal, K., Pal, S. K., Das, C. K., Kim, J. K.: Effect of fillers on morphological and wear characteristics of NR/HSR blends with E-glass fiber. Mater. Design 35, 863 (2012).Web of ScienceCrossrefGoogle Scholar

  • 8.

    Tinker, A. J., Jones, K. P.: Blends of Natural Rubber. Novel Techniques for Blending with Speciality Polymer (1998). Chapman and Hall, London.Google Scholar

  • 9.

    Hui, S., Chaki, T. K., Chattopadhyay, S.: Effect of silica-based nanofillers on the properties of a low-density polyethylene/ethylene vinyl acetate copolymer based thermoplastic elastomer. J. Appl. Polym. Sci. 110, 825 (2008).CrossrefWeb of ScienceGoogle Scholar

  • 10.

    Pal, K., Rajasekar, R., Kang, D. J., Zhang, Z. X., Pal, S. K., Das, C. K., Kim, J. K.: Influence of carbon blacks on butadiene rubber/high styrene rubber/natural rubber with nanosilica: morphology and wear. Mater. Design 31, 1156 (2013).Web of ScienceGoogle Scholar

  • 11.

    Nasir, M., Choo, C. H.: Cure characteristics and mechanical properties of carbon black filled styrene-butadiene rubber and epoxidized natural rubber blends. Europ. Polym. J. 25, 355 (1989).CrossrefGoogle Scholar

  • 12.

    Job, K.: Trends in green tire manufacturing. Rubber World 249(6), 328 (2014).Google Scholar

  • 13.

    Yatsuyanagi, F., Suzuki, N., Ito, M., Kaidou, H.: Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 42(23), 9523 (2001).CrossrefGoogle Scholar

  • 14.

    Pan, Q. W., Wang, B. B., Chen, Z. H., Zhao, J. Q.: Reinforcement and antioxidation effects of antioxidant functionalized silica in styrene-butadiene rubber. Mater. Design 50, 558 (2013).Web of ScienceCrossrefGoogle Scholar

  • 15.

    Manshaie, R., Khorasani, S. N., Veshare, S. J., Abadchi, M. R.: Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene–butadiene rubber (SBR) blend. J. Radiat. Phys. Chem. 80, 100 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Chowdhury, R., Banerji, M. S.: Electron beam irradiation of ethylene-propylene terpolymer: evaluation of trimethylol propane trimethacrylate as a crosslink promoter. J. Appl. Polym. Sci. 97, 968 (2005).CrossrefGoogle Scholar

  • 17.

    El-Nemr, K. F., Mohamed, R. M.: Sorbic acid as friendly curing agent for enhanced properties of ethylene propylene diene monomer rubber using gamma radiation. J. Macromole. Sci. A 54, 1 (2017).Google Scholar

  • 18.

    Charlesby, A.: Comparative Effects of Radiation (1960), John Wiley & Sons, Inc, New York, p. 24.Google Scholar

  • 19.

    Midhun Dominic, C. D., Sabura Begum, P. M., Joseph, R., Joseph, D., Kumar, P., Ayswarya, E. P.: Synthesis and characterization and applications of rice husk nano silica in natural rubber. Int. J. Sci. Environ. Technol. 2(5), 1027 (2013).Google Scholar

  • 20.

    Moosa, A. A., Saddam, B. F.: Synthesis and characterization of nanosilica from rice husk with applications to polymer composites. Am. J. Mater. Sci. 7(6), 223 (2017).Google Scholar

  • 21.

    Terkula, I. D., Wuana, R. A., Iorungwa, M. S.: Preparation and characterization of ‘green’ nano silica from rice husks. Chem. Mater. Res. 9(6), 1 (2017).Google Scholar

  • 22.

    Rajkumar, K., Ranjan, P., Thavamani, P., Jeyanthiand, P., Pazhanisamy, P.: Dispersion studied of nanosilica in NBR based polymer nanocomposite. Rasayan J. Chem. 6(2), 122 (2013).Google Scholar

  • 23.

    Hassan, M. M., Badway, N. A., Elnaggar, M. Y., Hegazy, S. A.: Effects of peroxide and gamma radiation on properties of devulcanized rubber/polypropylene/ethylene propylene diene monomer formulation. J. Appl. Polym. Sci. 131, 40611 (2014).Web of ScienceGoogle Scholar

  • 24.

    Farshid, G., Ali, M. S., Maryam, M.: Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environm. Stud. Pers. Gulf 2(1), 56 (2015).Google Scholar

  • 25.

    Majid, M., Masoud, R., Mohammad, H. A., Vahid, M.: Synthesis and Characterization of Nano SiO2 from Rice Husk Ash by Precipitation Method. 3rd National Conference on Modern Researches in Chemistry and Chemical Engineering, Mahshahr, Islamic Azad University of Mahshahr, Iran, 2011 (2014).Google Scholar

  • 26.

    El-Nemr, K. F., El-Naggar, M. Y., Fathy, E. S.: Waste ceramic dust activated by gamma radiation and coupling agents as reinforcement for nitrile rubber. J. Vinyl Addit. Techn. 24, 37 (2018).Web of ScienceCrossrefGoogle Scholar

  • 27.

    Wolff, S.: Chemical aspects of rubber reinforcement by fillers. Rubb. Chem. Technol. J. 69(3), 325 (1996).CrossrefGoogle Scholar

  • 28.

    Kaewsakul, W., Sahakaro, K., Dierkes, W. K., Noordermee, J. W. M.: Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. J. Polym. Eng. Sci. 55(4), 836 (2015).CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J. M.: Polyethylene/ground tyre rubber blends: influence of particle morphology and oxidation on mechanical properties. J. Polym. Test 26, 274 (2007).CrossrefWeb of ScienceGoogle Scholar

  • 30.

    Scagliusi, R. S., Cardoso, L. C. E., Lugao, A. B.: Effect of gamma radiation on chlorobutyl rubber vulcanized by three different crosslinking systems. Radiat. Phys. Chem. 81(9), 1370 (2012).CrossrefWeb of ScienceGoogle Scholar

  • 31.

    Leblanc, J. L.: Rubber-filler interactions and rheological properties in filled compounds. J. Prog. Polym. Sci. 27, 677 (2002).Google Scholar

  • 32.

    Stockelhuber, K. W., Svistkov, A. S., Pelevin, A. G., Heinrich, G.: Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44, 4366 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 33.

    Atif, M., Bongiovanni, R., Giorcelli, M., Celasco, E., Tagliaferro, A.: Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation. J. Appl. Surf. Sci. 286, 149 (2013).Web of ScienceCrossrefGoogle Scholar

  • 34.

    Ozmusul, M. S., Picu, C. R., Sternstein, S. S., Kumar, S. K.: Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules 38, 4495 (2005).CrossrefGoogle Scholar

  • 35.

    Sae-Oui, P., Rakdee, C., Thanmathorn, P. J.: Use of rice husk ash as filler in natural rubber vulcanizates: In comparison with other commercial fillers. Appl. Polym. Sci. 83, 2485 (2002).CrossrefGoogle Scholar

  • 36.

    Likozar, B., Major, Z.: Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitril rubber/multi-walled carbon nanotubes composites prepared by melt compounding: the effect of acrylonitrile content and hydrogenation. J. Appl. Surf. Sci. 257, 565 (2010).CrossrefGoogle Scholar

  • 37.

    Fritsch, J., Kluppel, M.: Structural dynamics and interfacial properties of filler-reinforced elastomers. J. Phys. Condens. Matter. 23, 1 (2011).Web of ScienceGoogle Scholar

  • 38.

    Zhao, G., Shi, L., Zhang, D., Feng, X., Yuan, S., Zhuo, J.: Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater. Design 35, 847 (2012).CrossrefWeb of ScienceGoogle Scholar

  • 39.

    Persello, J.: Designing nano structured particular fillers for elastomers. Role of nanostructure and polymer filler interactions in rubber reinforcement, E-MRS Spring Meeting, Strasbourg., France, 2002, p. 8.Google Scholar

  • 40.

    Vishvanathperumal, S., Gopalakannan, S.: Swelling properties, compression set behavior and abrasion resistance of ethylene-propylene-diene rubber/styrene butadiene rubber blend nanocomposites. Polym. Korea 41(3), 433 (2017).CrossrefWeb of ScienceGoogle Scholar

  • 41.

    Jacques, J. E.: Rubber compounding, rubber technology and manufacture, 2nd ed. In: C. M. Blow, C. Hepburn (Eds.), Rubber Technology (1985), Butterworths, UK, p. 386.Google Scholar

  • 42.

    Durandish, M., Alipour, A.: Investigation morphology, microstructure, and properties of SBR/EPDM/organomontmorillonite nanocomposites. J. Chin. Polym. Sci. 31(4), 660 (2013).CrossrefGoogle Scholar

  • 43.

    Sulkowski, W. W., Danch, A., Moczynski, M., Radon, A., Sulkowska, A., Borek, J.: Thermogravimetric study of rubber waste-polyurethane composites. J. Therm. Anal. Calorim. 78(3), 905 (2004).CrossrefGoogle Scholar

  • 44.

    Shih, Y. F., Jeng, R. J.: Carbon black-containing interpenetrating polymer networks based on unsaturated polyester/epoxyII. Thermal degradation behavior and kinetic analysis. Polym. Degrad. Stab. 77, 67 (2002).CrossrefGoogle Scholar

  • 45.

    Jankovi, B., Cincovi, M. M., Jovanovi, V., Samar, S., Jovanovi, S. S., Markovi, G.: The comparative kinetic analysis of non-isothermal degradation process of acrylonitrile–butadiene/ethylene–propylene–diene rubber blends reinforced with carbon black/silica fillers. Part II. Thermochim. Acta 543, 304 (2012).CrossrefWeb of ScienceGoogle Scholar

  • 46.

    Maiti, M., Khatua, B. B., Das, C. K.: Effect of processing on the thermal stability of the blends based on polyurethane: part IV. Polym. Degrad. Stab. 72(3), 499 (2000).Google Scholar

  • 47.

    Gann, R. G., Dipert, R. A., Drews, M. J.: Flammability. In: J. I. Kroschwitz (Ed.), Encyclopedia of Polymer Science and Engineering (1985), 2nd ed., vol. 7, John Wiley & Sons, Inc., New York, p. 154.Google Scholar

About the article

Received: 2018-05-19

Accepted: 2019-01-14

Published Online: 2019-02-13

Published in Print: 2019-07-26

Conflict of interest: The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Citation Information: Radiochimica Acta, Volume 107, Issue 8, Pages 737–753, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-2989.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in