Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Editor-in-Chief: Qaim, Syed M.


IMPACT FACTOR 2018: 1.339

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.333
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Online
ISSN
2193-3405
See all formats and pricing
More options …
Volume 107, Issue 8

Issues

Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties

Hoda H. Saleh
  • National Center for Radiation Research and Technology (NCRRT), Egyption Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rehab Sokary
  • Corresponding author
  • National Center for Radiation Research and Technology (NCRRT), Egyption Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zakaria I. Ali
  • National Center for Radiation Research and Technology (NCRRT), Egyption Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-20 | DOI: https://doi.org/10.1515/ract-2018-3003

Abstract

Polyaniline (PANI) nanoparticles and PANI/poly vinyl alcohol (PVA) nanocomposite films were synthesized by the oxidative polymerization of aniline and ammonium peroxodisulfate (APS), as an oxidizing agent in aqueous medium. The PANI/PVA nanocomposite films were exposed to γ-irradiation after oxidative polymerization. Synthesized polyaniline (PANI) nanoparticles and PANI/PVA nanocomposite films were characterized by attenuated total reflectance infrared spectroscopy (FTIR-ATR), X-ray diffraction, high resolution scanning electron microscopy, (HRSEM) high resolution transmission electron microscopy, (HRTEM) and UV-VIS absorption spectroscopy. Energy band gap of PANI nanofibers was determined from Tauc’s plots which equal 4.2 eV. Scanning electron microscopy images show that chemically synthesized of polyaniline has nanofibers structure and irradiated PANI/PVA nanocomposite have a mixture of nanorod and nanosphere structures. The transmission electron microscopy show that chemically synthesized of polyaniline has average length in the range 34 ± 10 nm with less wide distribution, where as the irradiated PANI/PVA nanocomposite has coreshell structure.

Keywords: Polyaniline; γ radiation; nanocomposites

References

  • 1.

    Goswami, M., Sahoo, S., Meikap, A. K., Gosh, R.: International Conference on Nanoscience Engineering and Technology, Chennai, 314 (2011).Google Scholar

  • 2.

    Abdelaziz, R., Mohamed, S., Manohar, S., Cho, S. J., Ferraris, J., Yang, D. J.: Polyaniline nanofiber synthesis by co-use of ammonium peroxydisulphate and sodium hypochlorite. Chem. Mater 20, 4808 (2008).CrossrefGoogle Scholar

  • 3.

    Thiyagrajan, M., Samuelson, L., Kumar, J., Cholli, A. L.: Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J. Am. Chem. Soc. 125, 11502 (2003).PubMedCrossrefGoogle Scholar

  • 4.

    MacDiarmid, A. G., Yang, L. S., Huang, W. S., Humphrey, B. D.: Polyaniline: electrochemistry and application to rechargeable batteries. Synth. Met. 18, 393 (1987).CrossrefGoogle Scholar

  • 5.

    Virji, S., Fowler, D., Baker, O., Richard, J. H., Kaner, Weiller, B. B. H.: Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small 1, 624 (2005).CrossrefPubMedGoogle Scholar

  • 6.

    Fukuoka, T., Tonami, H., Maruichi, N., Uyama, H., Kobayashi, S.: Peroxidase-catalyzed oxidative polymerization of 4,4′-dihydroxydiphenyl ether. Formation of α,ω-hydroxyoligo(1,4-phenylene oxide) through an unusual reaction pathway. Macromolecules 33, 9152 (2000).CrossrefGoogle Scholar

  • 7.

    Li, D., Kaner, R. B.: Shape and aggregation control of nanoparticles: not shaken, not stirred. J. Am. Chem. Soc. 128, 968 (2006).CrossrefPubMedGoogle Scholar

  • 8.

    Belagali, S. L., Vadiraj, K. T.: Characterization of polyaniline for optical and electrical properties. J. Appl. Chem. 8, 53 (2015).Google Scholar

  • 9.

    Winter, J. O., Gomez, N., Gatzert, S., Schmidt, C. E., Korgel, B. A.: Variation of cadmium sulfide nanoparticle size and photoluminescence intensity with altered aqueous synthesis conditions. Colloids Surf. A Physicochem. Eng. Asp. 254, 147 (2005).CrossrefGoogle Scholar

  • 10.

    Ethayaraja, M., Ravikumar, C., Muthukumaran, D., Dutta, K., Bandyopadhyaya, R.: CdS-ZnS core-shell nanoparticle formation: experiment, mechanism, and simulation. J. Phys. Chem. C 111, 3246 (2007).CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Winter, J. O., Gomez, N., Gatzert, S., Schmidt, C. E., Korgel, B. A.: Variation of cadmium sulfide nanoparticle size and photoluminescence intensity with altered aqueous synthesis conditions. Colloids Surf. A Physicochem. Eng. Asp. 254, 147 (2005).CrossrefGoogle Scholar

  • 12.

    Saleh, H. H., Ali, Z. I., Afify, T. A.: Synthesis of Ag/PANI core shell nanocomposites using ionizing radiation. Adv. Polym. Technol. 35, 21560 (2015) .Web of ScienceGoogle Scholar

  • 13.

    Jang, J., Ha, J., Kim, S.: Fabrication of polyaniline nanoparticles using micro emulsion polymerization. Macromol. Res. 15, 154 (2007).CrossrefGoogle Scholar

  • 14.

    Elsayed, A. H., Mohy Eldin, M. S., Abo Elazm, A. H., Younes, E. M., Motaweh, H. A.: Synthesis and properties of polyaniline/ferritesnanocomposites. Int. J. Electrochem. Sci. 6, 206 (2011).Google Scholar

  • 15.

    Prabhu, R. R., Abdul Khadar, M.: Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Sci. 31, 511 (2008).Web of ScienceCrossrefGoogle Scholar

  • 16.

    Osorio-Fuente, J. E., Gómez-Yáñez, C., María de los Ángeles H.-P., Pérez-Moreno, F.: Camphor sulfonic acid-hydrochloric acid codoped polyaniline/polyvinyl alcohol composite: synthesis and characterization. J. Mex. Chem. Soc. 58, 52 (2014).Google Scholar

  • 17.

    Bhadra, J., Sarkar, D.: Size variation of polyaniline nanoparticles dispersed in polyvinyl alcohol matrix. Bull. Mater. Sci. 33, 519 (2010).CrossrefWeb of ScienceGoogle Scholar

  • 18.

    Elashmawi, I. S., Hakeem, N. A., Soliman Selim, M.: Optimization and spectroscopic studies of Cds/poly(vinyl alcohol) nanocomposites. Mater. Chem. Phys. 115, 132 (2009).CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Seaoudi, R., El Baily, A. B., Eisa, W., Shabaka, A. A., Soliman, S. I., Abdel Hamid, R. K., Ramadan, R. A.: Synthesis optical and dielectric properties of PVA/Cds nanocomposites. J. Appl. Sci. Res. 8, 658 (2012).Google Scholar

  • 20.

    Bhadra, J., Sarkar, D.: Self-assembled polyaniline nanorods synthesized from a facile route of dispersion polymerization. Mater. Lett. 63, 69 (2009).CrossrefGoogle Scholar

About the article

Received: 2018-06-18

Accepted: 2019-01-15

Published Online: 2019-03-20

Published in Print: 2019-07-26


Funding Source: Science and Technology Development Fund

Award identifier / Grant number: 6370

This work was funded by the Science and Technology Development Fund (STDF) in Egypt under the grant number (6370). The authors would like to thank the STDF for their fund.


Citation Information: Radiochimica Acta, Volume 107, Issue 8, Pages 725–735, ISSN (Online) 2193-3405, ISSN (Print) 0033-8230, DOI: https://doi.org/10.1515/ract-2018-3003.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in